M SGSYS, | NC.

The Programmer's
GQul de to TRSDOS

Ver si on 6

M sosys, Inc.

The Programmer's Quide to TRSDOS Version 6

By Roy Soltoff, BSEE

Copyright & 1983 M SOBYS
Al R ghts Reserved

First Edition - 1983
Second Edition - 1984

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chem cal, manual or otherw se, w thout expressed witten permssion is
pr ohi bi t ed.

D scl ai ner:

Wil e M SOSYS has taken every precaution in the preparation of this book, it
assunes no responsibility for errors or omssions. Neither is any liability
assuned for danmages resulting fromthe use of the information contained
her ei n.

M SCSYS | nc.
P. O Box 239
Sterling, Virginia 22170-0239

This book is dedicated to nmy first daughter, Stacey Elizabeth, whose birth the
ei ghth of June of 1983 provided ne ny proudest nonment in life. There is no way
that | can sufficiently thank ny wife, Brenda, for nurturing and bringing forth
this new human being - but 1'Il try.

1. Introduction

Many thousands of users take it upon thensel ves to explore the workings of an operating
system to gain a better understanding of application software interfacing. This has
al ways been such a waste of programrer talent because the systems designers usually know
the best interfacing procedures. A conplex operating system has many idiosyncrasies.
Because of this fact, sone procedures work nuch better than others to acconplish the same
goal .

An operating systemin this day and age denands that precious talent not be wasted. LDCS
Version 6 is a conpl ex operating system There should not be a void of information that
the programmer needs to properly wite his or her software. For the programer, this book
should fill that void. It is not intended as an assenbly | anguage | earning tool nor is it
intended as an expose' of "nysteries" concerning the internal workings of the operating
system This book conveys that information which is essential to the job of programmng
application software, utilities, device drivers and filters.

It is very inportant for the programmer to keep PCRTABILITY paramount in the thinking
that goes along with program design. LDO5 Version 6 was designed to provide portability
for application software by incorporating standard protocols and conventions for all
interfacing. Keep that in mnd when you explore the contents of this book.

Knowing that the mcroconputer comunity inherently finds distasteful the prospect of
readi ng docunentation cover-to-cover prior to junping in and getting their feet wet, this
book includes an index. Then agai n, what kind of book omts an index? Feel free to access
the information randomy, although | recommend that a sequential scanning is nore suited
to the | earning process.

The chapter contents have been designed to be self-contained. Thus, you may find some
smal | repetition of subject matter where it was felt that a termor concept may not have
been carried over froman earlier chapter due to an i ndexed access of the subject matter.

| have tried to be conplete within the subjects discussed. As there are sone proprietary
itens within the operating system confidentiality precludes their appearance in this
book. However, any work of this nagnitude is bound to omt a detail. If you feel that a
subj ect shoul d have been included, please bring it to the publisher's attention. Renenber
that the desire to foster the devel opnent of portable software nay nean that certain
points nay have been omtted to preclude the witing of non-portable nachine specific
software. Wiere you nmust wite nachine specific software, it is recomended that you
obtai n the nanufacturer's hardware techni cal nanual .

The programming exanples were coded with the PRO CREATE assenbler, which is available
from MSOSYS. References to SuperVisor Calls in the form @XXX should have a
correspondi ng EQU stat enment, which defines the SVC nunber.

For those individuals firmy entrenched in operating system exploration, | heartily
recommend THE SOURCE, a three-volune set of books that provide the conplete set of
assenbl er source listings that constitute LDOS Version 6.2.0. THE SOJURCE is available
from Logi cal Systens, Inc.

Lastly, the author is always open to suggestions for inproving this book. Certainly if

you uncover erroneous data, suggest that it be corrected in the next printing. I w sh you
successful programmi ng.

1-1

2. LDCS VERSI ON 6 - AN OPERATI NG SYSTEM OVERVI EW

After spending a few hours at any conputer show featuring mcroconputers, it becones
obvious that most 8-bit machines | ook surprisingly simlar. Each cones equi pped nore or
less with the followi ng features: CRT nonitor, keyboard, one or nore 5-1/4" or 8" floppy
disk drives (usually 5-1/4" mnifloppies), 64K-128K of RAM and a processor card. Wth
the industry seenmingly adopting CP/M as an operating system pseudo-standard, the chip
usually chosen is Zilog's Z-80 mcroprocessor. The design of these machines nust be
sufficiently straight forward. Wiile each conpeting nanufacturer attenpts to nake its
machine nore desirable by inplenenting greater reliability, flexible interfacing, nore
peri pheral support, additional hardware features, attractive packaging, and |ower cost,
cogni zance of the cost effectiveness of utilizing snarter software may just be the
i nportant ingredient sometimes overl ooked.

Alternative operating systens are available that bring a great deal of nain-frame power
to the microconputer. e such system LDCS Version 6 [or its licensed dialects such as
TRSDCS 6], is a classic exanple of a truly powerful operating system designed for an
eight bit mcroconputer using the Z-80 processor chip. LDO5 provides a singl e-user system
with total device independence, dynamc file space allocation, extensive file nanagenent,
job control |anguage structures, a large library of utilities, plus the ability to easily
interface to di sk storage devices with capacities from88 kilobyte mnifloppies to milti-
negabyte Wnchester disk drives. Error trapping and an English-like comrand structure
hel p make LDOS a user-friendly but powerful operating system

The primary design obligation of LDCS is to ensure MEDIA COWPATIBILITY across all
nmachines running the DOS (within the 5-1/4 or 8" size). This neans that a user nust be
able to take a diskette and use it across all nmachines running LDCS - so long as the
hardware permts that size diskette. To acconplish this, the DO5 has a "standard" 5-1/4"
structure - both single density and double density. It also has a "standard" 8" diskette
structure. The structure goes beyond just the format and allocation schemes - it covers
the entire directory makeup.

The hardware architecture chosen for LDOS Version 6 is a Z-80 based mcroconputer with a
m ni nrum of 64K RAM and 80 by 24 video screen size. The DGC5 includes a bank-sw tching
SuperVisor Call that inplenments nenory bank switching. The SVC permts swtching a menory
segnent (usually the top 32K) with up to seven auxiliary 32K nenory banks. It also
supports the controlled transfer of execution to a location within the bank at the option
of the user. The system naintains supervision of the resident bank to ensure that the
standard bank (bank 0) is always resident during certain operations (disk I/Q character
I/Q and interrupt task handling). The DCO5 is designed to operate starting from address
zero (page 0 origin) and is 100% SuperVi sor Call (SVQ accessed. Systemdata itens needed
by application software are al so avail abl e via S\VGCs.

Essentially, there are two levels of interaction to the system - command |evel and
primtive level. A the command | evel, the operator enters a comrand which requests the
execution of sone function [perhaps the listing of a file, the displaying of a disk
directory, the running of a BASIC program or the conpiling of a Clanguage source file].
The command interpreter parses the user entry, determnes whether the request is for a
system function or wuser-supplied function, then arranges for the necessary system
resources. Control is transferred to the nodule necessary to satisfy the request. The
system passes paraneter pointers to the nmodule and expects a return code upon the
nodul e' s conpl eti on.

Systemresources and data quantities are requested via a SuperVisor Call (SVQ processor.
An SVC is associated with all systemprimtives (i.e. get a character, put a character,
open a file, add a task, rename a file, ...). Application software witten in a | owlevel
| anguage (such as assenbler) makes direct use of the SVC Progranms using a high-1evel

2-1

| anguage (i.e. BASIC C PASCAL, ...) need not bother with the SVC as systeminterfacing
is acconplished within the | anguage interpreter or conpiler.

The DO supports up to eight |ogical disk packs or volunes logically nunbered O-7. Each
floppy, be it one or tw sided, is treated as a single volune. Hard disk drives
(winchesters) may be treated as a single volune or partitioned into nultiple volumes. A
Drive Control Table (DCT) contains the paraneters associated wth each disk (nunber of
cylinders, heads, and sectors per track for exanple) and al so interfaces the disk driver
software to the system

Character Input/Qutput devices (i.e. keyboard, video display, printer, RS 232 serial
ports, ...) and their associated software driver routines are interfaced to the system
via Device Control Blocks (D3B). 1/0 devices are identified by a two-character device
nane such as Kl (keyboard input), DO (video output), PR (printer), and CL (commnications
line). Wienever a device is specified, it is denoted by an asterisk followed by the
device nane to form a conplete "device specification'. The reason for this wll soon
beconme evident. Additional devices can be defined to the system once an appropriate
software driver is available. The device nane selection is left up to the user.

A collection of data stored on disk is termed a file and is denoted by a file
specification. A conplete file specification consists of five parts: a file name of up to
eight characters, a file extension of up to three characters, a file password of up to
eight characters, the logical drive specification, and optionally, in certain cases of
Partitioned Data Sets (PDS), a nmenber specification of up to eight characters. Wenever
users institute a structured namng convention, nost files are accessible via the file
nane reference only. The DO will search all drives for a file if the drive specification
is omtted from the file specification. In addition, nany system utilities and user
applications can use default file extensions to separate files into classes. For
exanpl e, PRO CREATE, a popul ar assenbler running under the D05, wll automatically use
the file extension "/ASM for its source files and "/QWD' for its object code generation
thus alleviating the user of the necessity to enter the file extensions (it also helps to
prevent inadvertently overwiting one file wth another). S mlarly, LD mnakes
extensive use of default file extensions such as "JO." for all Job Control Language,
"TXT" for ASAIl listings, "FLT'" for all device filters, etc.

File specifications and device specifications are generally interchangeable. Thus,
wherever a file specification is needed, a device specification can usually be entered.
This is one of the exanpl es of device independence in the system The protocol used in
character 1/O is identical across logical devices (i.e. *K, *PR *SQ...) and disk
files. Thus, character 1/O is handled the same way regardl ess of the physical device
identified in the Device/File Control Bl ock (DOB/FCB) - be it physical keyboard, printer,
or disk file. For exanple, the OPY utility is used prinarily to copy a file from one
disk to another, as in:

QCPY ARTI CLE/ TXT: 0 TO ARTI OLEH/ TXT: 1
which creates a duplicate on drive 1 of the file specified "ARTI CLE/ TXT" | ocated on drive
0. Inlieu of the file specifications, device specifications could equally be used as in
the foll ow ng:

QaPY *KI TO *PR
whi ch copi es keyboard input directly to the printer. Wth ease, a keyboard can be added
to a daisy-wheel printer turning it into a tenporary typewiter. Perhaps a nore useful

illustration would be the convenience of directing program output to video display,
printer, or a file depending on the device/file specification provided.

2-2

The acquisition of disk file space is conpletely transparent to the user. This frees the
user fromworrying about sectors, tracks, cylinders, heads, and even disk drives in nost
cases. File space is obtained dynamically for any given file when space is required.
Since directory accesses are dynamc (i.e. any tine directory information requires
updating, a disk access is nmade), users can change floppy diskettes in a disk drive after
any open files on the di sk have been closed with out having to "l og" the action.

Files do not have to occupy contiguous space on a disk but can exist in blocks of space
called extents. Linkage maps exist in a file's directory which connect each extent.
Access to a file is achieved by placing the file specification in a File Control Bl ock
(FCB), referencing a user disk file I1/Obuffer, and issuing the "CPEN' SVC. The provi si on
of a separate file buffer for each file greatly adds to the systemis flexibility.
Drectory information needed by the file access routines is then placed in the "open"
FCB. Thereafter, SVC requests for file positioning, reading, and witing are available to
access any record in the file. Fixed record lengths of from one to 256 bytes are
available directly at the SVC level. Languages, such as BASIC generally provide
sequential files with variable record | engths.

A though the functions supported are many, a mninum of the machine's RAM space is
required by LDC5. This is achieved by having only frequently used routines resident in
nmenory while others are brought in to an overlay region on an as-required basis. Al of
the functions identified in Table 1-1, including the device and di sk drivers (both fl oppy
and hard), are contained in a 9K nmenory space which includes a 1.5K (1536 bytes) system
overlay region. Another 3K region is used for the execution of system library comrands
but may be used by applications that do not request system library functions.
Functionally, the DO is divided into seven regions: system low core (LONCRE),
I nput/Qutput driver region (IR, resident system (SYSRES), System Qverlay Region (SR,
Library Overlay Region (LCR), User Program Region (UPR), and high nenmory region (HMM.
The UPR extends from X 3000 through HGHb. Table 1-1 illustrates these regions. The DC5
norrmal |y does not use HMEM however, certain user-specified requests nust be satisfied
by use of high nmenory. For exanple, SPOCL filter and buffer space use high nmenory. KSM
filter and data space use high nmenory. A pointer to the top of HMEMis available via an
SVC and prograns nust honor this H G4 pointer.

The interrupt task scheduler listed in Table 2-1 under SYSRES schedul es the execution of
smal | background tasks at periodic intervals. The tine intervals are determned prinarily
by a hardware generated interrupt to the Z-80 processor. A desirable mninmminterrupt
rate would be 40-60 Hz. This "clock"” is software divided to produce "high", medium and
"l ow' level task control. The DC5 provides for eight |low |l evel tasks, three medi uml evel
tasks, and one high level task. For exanple, with a 60Hz interrupt rate, one task can be
perforned at 16.7nms intervals, three discrete tasks can be processed at 33.3ns intervals
while eight other tasks are processed at 267ns intervals. The types of tasks generally
operating from such a scheduler would be software tine of day routines, printer
despooling routines, address trace functions, keyboard type ahead scanning, blinking
cursor routines, or other processes that need to be examned at periodic intervals.

As a specific exanpl e of how software can reduce hardware costs, briefly exam ne keyboard
type-ahead. This feature is quite significant to a fast typist. Even slow operator entry
can gain from type ahead by the ability to enter responses in anticipation of known
queries. Even if the hardware does not provide an interrupt generating keyboard, the DO5
i npl ements a 64-128 (depending on rel ease) character type ahead buffer via task polling
which is adequate for all operators.

2-3

NAVE START END DESCR PTI ON

LONCRE X 0000 @SYS RST vectors, NM vector, Systemflags, Date, Tine,
System FCB, DEBUG regi ster save area, JCL FCB,
Command FCB, SVC Table, DB Tabl e, System stack,

M scel | aneous data, Command input buffer, Drive
Control Table, Device I/O handl er, dock task, Mnory
nmanagenent routi nes.

I OR @>YS X 12FF Keyboard, Video, Printer, and D sk drivers.

SYSRES X 1300 X 1DFF Fil e access routines, SVC processor, System overlay
handl er, System program | oader, Interrupt Task
Schedul ar, System buffer.

SCR X 1E00 X 23FF Execution region for systemoverlays 2-5, 9-13,
overlay disk file buffer.

LOR X 2400 X 25FF Execution region for systemlibrary comands contai ned
inlibraries A B, & C

UPR X 3000 (H &) Execution region for user transient prograns (note:
prograns not accessing the systemlibraries can start
at X 2600'.)

H MEM (HG)+1 | X FFFF Region for relocation of extended systemand user

static nodul es.
Tabl e 2-1 System Map

The task scheduler is also used by the despooling function of the printer spooler. The
DCO5 spool er inplenents a conbination of nenmory and disk buffers to tenporarily hold the
printer output. This output is despooled to the printer under the control of the task
schedul er. The function, being transparent to the user, can continue the despooling even
after the application generating the output is finished and another started. Wen the
system contains 128K (or nmore) of RAM the extra RAM can be set aside for the spooler's
nmenory buffer.

The primary function of any operating systemis to provide the user with a facility for
managi ng and accessing files stored on disk storage devices. Since the user nust not be
burdened with the physical details of the storage devices thenselves, it is the operating
systems responsibility to translate all file record access requests into specific drive,
track, sector, and head paraneters that pinpoint the storage |ocation of each record. The
DO5 supports a wi de range of disk storage capacities. Let's take a brief ook at how a
di sk drive is organi zed.

Each track is formatted into a specific quantity of 256-byte sectors with a maxi num
capacity of 32 sectors per track. Sectors are grouped into bl ocks called "granul es" which
vary in size according to total track capacity. Wenever additional disk space is needed
for afile, an additional granule is allocated. The granul e thus becones the nini numsize
storage unit. Wiere multiple headed drives are in use, the track nunbers on a surface are
duplicated on each surface with all simlarly nunbered tracks constituting a cylinder.
CQylinder capacities also have an upper limt of 256 sectors per cylinder or eight
granul es per cylinder while the systemsupports a maxi numof eight heads per drive.

In order to evenly use the entire surface of a drive, files are uniformy distributed
across each surface [note: LS wunfortunately has changed to a fixed allocation schene
effective with release 6.1]. That neans the head has a tendency to be randomy | ocated
whenever a directory access is needed. Because of this, each disk drive's directory is
pl aced on the cylinder closest to its mdpoint which provides a tendency to ninimze the
average seek tine for directory accesses. The directory, of course, contains information
on each file stored on the drive as well as additional tables and codes pertinent to the
drive.

The first sector of the directory contains a granule allocation table (GAT). The GAT is
bit napped to each granule of space on the drive. Gher fields in the GAT contain the

2-4

PACK NAME, DATE of creation, pack PASSWRD, and data pertaining to the configuration of
the drive.

The system can support a capacity of 13 Megabytes of directly addressabl e storage on each
of eight drives. Rgid disk drives of greater capacities can be supported by partitioni ng
theminto two or nmore logical drives. Also, where a physical parameter exceeds the upper
l[imts, translation techniques can be used in software. Again, the flexibility of the
system provi ded through intelligent software allows for easy interfacing.

Wen a file is to be opened for access, the systemneeds to search the directory for its
directory record. Search tine is mnimzed by using a hashi ng technique to reduce the 11-
character string formed fromthe file name and extension to a one-byte value. The hash
code for each file is stored in a Hash Index Table (HT) which is the second sector of
the directory. Each position in this table corresponds to a specific directory entry
record. The hash table, being a sector in length, can index a naxi um of 256 directory
records or files. The directory itself is sized according to disk capacity by being a
maxi mum of one cylinder (up to 34 sectors). Thus, the larger the disk storage capacity,
the larger its directory, and the greater the nunber of file names that can be stored.

To open a file, therefore, the file name and extension are gathered from the
specification and put through the hashing algorithm The HT sector is read and searched
for a matching value. Wen a match is found, the directory sector containing the
corresponding directory record is read. To guard against a different file nane/ext
hashing to the sane value (which is called a collision), the 11-byte string is then
checked for a match. If the correct record has not been retrieved, the HT is exam ned
further.

The directory record contains information such as the date the file was last nodified,
its update and access password codes, its access level, other attributes such as whet her
it is aSySemor PDS file and if a backup has been made, the relative nunber of the I|ast
sector in the file and the last byte within the | ast sector. The record al so contains the
physical storage in use by the file by pointing to the cylinder, relative starting
granul e, and nunber of contiguous granules for each extent linking up the file. Wen a
file has nore than four extents, additional directory records are used as required with
forward and backward pointers |inking each record.

A feature considered inportant by nmany users is the flexibility of the file nanagenent
utilities. These utilities include such functions as copying files from one drive to
anot her, appending two files together, listing files with structured formatting, renam ng
files, renoving files, obtaining disk directories, and naking archival backups of your
"favorite" files. Al are popul ar functions wth BACKUP bei ng one of the nost inportant
inlight of the trenendous capacity avail abl e when using | arge storage devi ces.

Ever since small w nchester drives started to appear interfaced to small nicroconputers,
the question of how to backup these devices loomed |arge. A though sone installations
consi der streaning tape for backup (relatively expensive as an added cost) while others
are incorporating video cassette recorder interfaces (assumes the availability of VCRs at
the mcro site or another added cost), by far the most popul ar nethod has been the use of
floppy diskettes (least expensive and w dely available). Fl oppies do have a serious
drawback. W en conparing the available capacities of a single floppy to a snall
w nchester, it soon becormes obvious that a good handful of diskettes are required to
backup the hard dri ve.

A sophi sticated backup utility can ease the frustration of archiving hard disk files. For
one thing, with the availability of 80-track 2-headed mnifloppies, over 700 Kil obytes
can be stored on a single 5-1/4" diskette when recorded in double density. Wth 2-headed
8" drives, 1.2 Megabytes of storage exist on a floppy diskette. For another thing, the

2-5

backup utility provides exceptional flexibility as can be evidenced by the follow ng
command exanpl es:

BACKWP :4 TO: 2

wll copy all files fromlogical drive 4 to logical drive 2. If both drives are floppies
having the same physical configuration (i.e. both 40-track 2-headed with the sane
density), then the backup will automatically be performed track by track called "mrror
i rage".

BACKUP / TXT: 3 TO :5 (CLD)

wll copy all files with a file extension of "TXT" fromlogical drive 3 to logical drive
5 but only if the file already exists on logical drive 5. The use of the "Q.D' paramneter
permts organi zati on of archival copies.

BACKUP R$S/ BAS: 4 TO : 2 (MDD, DATE="11/ 09/ 82- 11/ 15/ 82")

wll nake copies of all files fromlogical drive 4 with a filename starting with the
character "R', the third character "S', with any character acceptable in all other file
nanme character positions. A so, files must have been l|ast nodified between the dates of
Novenber 9, 1982 through Novenber 15, 1982 inclusive in order to be included in the
backup. In addition, the file nust not have been backed up since it was |last nodified.

These exanples illustrate the extrene flexibility of managi ng archival copies of working
files. Wien used in a hard drive environnent, |arge capacity floppy diskettes can be used
to store selected "classes” of files with working files backed up in a structured nanor
only if they have been nodified. Daily "churning" of working files is mninmal, thus a
procedure that enables a backup only if a nodification has been done to a working file
within a class certainly lends itself to optimum file nanagenent techniques w thout the
need for expensive backup hardware. For those cases where a single file exceeds the
capacity of a single floppy, a separate utility provides diskette spanning capabilities
for the backup.

The command to obtain a directory display is used frequently in nost nachine en-
vironnents. The DO5 directory command listing is sorted by file nane/ext. Wen the I ength
of a listing exceeds the line capacity of the video display, paging is perforned with a
pause at each page. The listing provides data on the protection level, |ogical record
length, file length (in kilobytes), date of last update, and whether a backup copy
exists, for each file in the directory. A partial file specification can be requested to
limt the listing to those files in the "class" simlar to the BACKUP utility.

Disk files are supported with two types of access - Record 1/O and character 1/Q Logical
Records of from one to 256 bytes in length can be read or witten using the @EAD or
@W TE SVC requests. Record 1/0O can be random access (by position SVC requests prior to
READ WR TE) or sequential access using repetitive READs or WR TEs. Character 1/0O is
acconpl i shed by @ET and @UT SVC requests and is essentially the same as record 1/Owth
a Logical Record Length (LRL) equal to one. However, if CGET and PUT are used to inpl enent
sequential access, then a file can be considered a character 1/O device just like a
printer, a serial port, or a video display device. A byte I/O request is therefore
i ndependent of the physical device "connected" to the control block which is requesting
the I/Q This makes the system "devi ce i ndependent™”.

Routing, filtering, and linking is 100%- devices may be routed to files and subsequent!y
filtered and linked. A priority level hierarchy is established according to bit assign-
ments in the DCB: file, NL, route, link, and filter (file being the highest). Filters
are assigned control blocks in the DB tabl e area which supports up to 31 entries. Each
device driver and filter has its own entry. The establishment of a LINK al so uses a DB

2-6

entry to maintain the pointers used for each device in the LINK Several systemlibrary
commands, such as the FILTER LINK RESET, ROQUTE, and SET commands, are provided that are
used to support device independence. An illustration of the use of these commands | ends
well to understanding the full power of device independence. For exanple, if a suitable
software driver (with a filenane of RS232/DVR) is available for a serial port (RS 232
channel), then a sinple:

SET *CL TO RS232

wll establish the serial port as a device with "Q." as the device nane. Now that such a
device is available, the user can:

LINK *KI TO *CL
LINK *DO TO *CL

and the mcro is established as a "host" because the serial communications |ine has been
linked to both the machi ne's keyboard and its video display - the primary input and out -
put devices of the nachine.

Device I/O can also be massaged with transfornmation functions, called filters. For
exanple, an BEBADIC to ASAIl translation filter is available that when applied to the
serial port by a sinple:

SET *XL TO XLATE USI NG EBCDI C
FILTER *QL WTH XLATE

the mcro can be tied to an IBM mainfrane which supports only EBCDIC ports. Vént to
inplement a DVCRAK keyboard? By sinply filtering the *KI device with the DVORAK
translation filter, the keyboard is reorganized - w th NO hardware changes required. Mny
filters are available to format print output, trap specific character codes, perform
upper /| ower case conversions - the limts are boundl ess. That's flexibility!

Now that you have a flavor of the capabilities of the D35 this guide can be used to
understand how to interface your prograns. The bulk of LDOS Version 6 is nachine
i ndependent. Wat this nmeans to you as a programmer is that once you wite an application
to run under LDCS 6.x, it is portable to any machine running version 6. Al you need do
is utilize the standard interfacing procedures discussed in this programmers gui de. Let
the DOS do what an operating systemis supposed to do - interface the application to the
har dwar e.

2-7

3. Device Input/Qutput Interfacing
3.1 Device I/O1In Genera

Devices interface to the operating system through driver nodules. Character-oriented
devi ces (keyboards, video display tubes, printers, and serial termnals, to nane but a
few), have their drivers connected to the DC5 by Device Control Block (DCB) tables [this
is in contrast to disk-type devices which have drivers connected to the system through
Drive Control Tables (DCT)]. The purpose of the DOB is to associate a device name wth
the device hardware itself. A device specification (abbreviated as "devspec") is formed
by prefixing an asterisk to the device name. Prograns nay then reference the device via
the device specification in order to identify a particul ar device for character 1/Q

There are three input/output functions that are associated with all character-oriented
devices. The "CET" function obtains a character fromthe device. The "PUT" function sends
a character to the device. The "CIL" function provides a neans of communicating with the
devi ce driver and generally does not invoke input/output with the physical device itself.
It is up to the device driver to ensure that the device is currently able to take the
character in the case of PUT as well as detect the availability of a character in the
case of CET and return the proper condition.

Dsk files may also be interfaced via character 1/O as well as record I/O [file access
via record 1/Ois discussed in chapter 6, D SK FILE ACCESS AND OCNTRQL]. A disk file's
actual physical storage location on a disk drive is transparent to the user by
referencing the file wth its associated nane (nore properly termed its file
specification or "filespec"). The operating system permts filespecs and devspecs to be
used equivalently in nost cases. Character I/Ois thus independent of a device or file.
The DCO5 permts the redirection of character 1/O at the command | evel. Because of this,
appl i cations nust expect character I/O to be associated with a disk file as well as a
standard character-oriented device. The D05 provides a wuniform protocol for 1/0O
handshaki ng regardl ess of character device.

There are three najor operations associated with devices. One of these is "routing” which
i npl ements the support of 1/O redirection. Another is linking which is used to connect
two or nore devices together. The third operation associated with devices uses filters to
achieve filtering. Filters are program nodul es that can be logically placed between the
Device Control Bl ock associated with a device and the device driver connected to the DCB.
This operation will formwhat is called a "device chain'. Mre than one filter nodul e may
be placed in the DOB-to-driver chain. These filters bear a very close resenblance to
device drivers. In fact, they also utilize the Device Control Block tables to associate
their menmory storage | ocation with the name assigned to themwhen they are install ed.

This section will discuss the activities that take place between a Device Control Bl ock
and a device so that you wll better understand the concepts of character 1/Q In this
manner, you wll have no problemin witing device filters and drivers - at |least as far
as D5 interfaci ng goes.

3.2 The Device Control Bl ock

The Device Control Block (DCB) is used to interface with various |ogical devices such as
the keyboard, the video display, a printer, a comunications line, or other device
defined by your hardware inplenentation. The DCB is conposed of eight bytes divided into
four fields: TYPE VECTGR SYSDATA, and NAME Figure 3-1 illustrates the DCB. The TYPE
field is a one-byte field that describes the capabilities and current state of the DCB
(state indicative of routed, linked, filtered, etc.). The VECTOR field is a two-byte
field that initially is a pointer to the entry-point of the driver or filter modul e
associated with the DCB. The SYSDATA field is a three-byte field that is used by the

3-1

systemto support linking and routing. The NAME field is a two-byte field that contains
the nane associated with the device.

I T O O I I I
| TYPE |VECTCR SYSDATA | NAME |

I I
7654321015 023 015 0

Figure 3-1: DB Fields

The DB follows a strict format that defines the utilization of all four fields. The
programmer need be concerned only with the TYPE and VECTCR fields. The system requires
sole use of the SYSDATA field. It also maintains the NAME field thus wusually
necessitating no programmer intervention. The DB format nmust be followed in all Device
Control Bl ocks established by the user. The follow ng information provides specifications
for each field of the DB

3.2.1 TYPE Field - Byte O
Bit 7 This bit specifies that the Control Block is actually a File Control Bl ock
(FCB) with the file in an CPEN condition. Since there is a great deal of
simlarity between DBs and FOBs, and devices nay be routed to files,
tracing a path through a device chain may reveal a "device" with this bit
set, indicating a routing to a file.

Bit 6 This bit specifies that the DCB is associated with a FILTER nodul e. The
VECTCR field then contains the entry point of the filter. A filter
initializer nust set this bit when the nodul e is assigned to the DCB.

Bit 5 This bit specifies that the DB (say device AA is linked to another
devi ce associated with a DCB (say device BB). The VECICR field of AA wll
point to a dummy LINK DB (say device LK) which was established by the
system when the LINK library command was invoked. The VECTOR field of LK
then will point to the original VECTCR contents of AA while the SYSDATA
field will contain a pointer to the BB DOB. A picture is said to be worth
a thousand words. The device chain linkage will be illustrated | ater.

Bit 4 This bit specifies that the device defined by the DOB is routed to anot her
character-oriented device or file. The VECTOR field will either point to a
DB if the route destination is a device or it will contain a pointer to
the file's FCB field contained in the route nmodule established by the
systemis RQUTE |ibrary command.

Bit 3 This bit specifies that the device defined by the DCB is a NL device. Any
output directed to the device will be discarded. Any input request wll be
satisfied with a ZERO return condi tion.

Bit 2 This bit specifies that the device defined by the DB is capable of
handl i ng requests generated by the @TL SuperVisor Call.

Bit 1 This bit specifies that the device defined by the DB is capable of
handl i ng out put requests which come fromthe @Ul SuperVisor Call.

Bit O This bit specifies that the device defined by the DB is capable of
handl i ng requests for input which come fromthe @ET SuperVi sor Call.

3-2

3.2.2 VECTOR Field - <Bytes 1 - 2>

This field initially will contain the address of the driver routine that supports the
devi ce hardware associated with the D3B. In the case of programmer-installed drivers, the
driver initialization code nust load the driver's entry point into the VECICR field of
its respective DOB. Likewi se, when a filter module is established (via the SET library
command), its entry point is placed into the VECTCR fiel d. Onhce established by either the
systemor the driver/nodule initialization code to point to the nodule's entry point, the
VECTCR field is then mai ntai ned by the systemto effect routing, linking, and filtering.

3.2.3 SYSDATA Field - <Bytes 3-5>
These three bytes are used by the systemfor routing and |inking and are unavail abl e for
any ot her purpose.

3.2.4 NAME Field - <Bytes 6 - 7>

Byte 6 of this field contains the first character and byte 7 the second character of the
devi ce specification nane. The system uses the device nanme field as a reference in
searching the Device Control Block tables. Wen a DOB is assigned by the systemduring a
SET or RQUTE command, this device name field will be |oaded by the systemw th the device
speci fication name passed in the command invocation. Prograns requesting a spare DB via
the @sIDOB SuperVisor Call (and a binary ZERO nane), are responsible for loading this
nare field.

If the device has been routed to a file and a search of the device chain shows a TYPE
byte with bit-7 set, then the respective control block is an FCB. In this case, byte 6 of
the field will contain the DR VE nunber of the drive containing the file and byte 7 will
contain the Directory Entry Code (DEC) of the file.

3. 3 ACCESSI NG DEVI CE CONTROL BLOCKS

The system naintains space in low menmory for the storage of the Device Control Bl ock
records. There is space sufficient for 31 records. The first DB wll always be
associated with the systemdevice named *KI. Therefore, a pointer to the first block nay
be determned by using the @IDCB SuperVisor Call as foll ows:

LD DE 'IK ;Load nane in reverse order
LD A, @sTDCB ;ldentify the SVC
RST 40 ;1 nvoke the SVC

JP NZ, ERRCR :Transfer if not found

Won return fromthe SVC register HL will contain a pointer to the DCB associated wth
*KI. An error will result only if the DOB nane field was altered. Spare DCB records are
filled with binary zeroes. Therefore, a spare DB record nmay be |ocated by |oading
register pair DEwith a binary zero value prior to issuing the SVC

The DOS command "DEVI CE (B=Y)" can be used to obtain a |linkage map of all device chains.
As can be observed fromsuch a listing, all 31 control blocks are not in use. Additional
devi ces are defined by using the SET library command. Any device assigned by the user to
a spare control block, nay be removed fromthe systemafter the device is RESET by using
the "REMOVE devspec” command. The DC5 defined devices are protected and cannot be
r enoved.

3.4 DEVI CE CHAI N | LLUSTRATI ONS

Before we can illustrate the device chain, it is necessary to first reiterate the nmenory
nodul e header protocol as required by the system It is essential that this protocol be
used for all nodules placed into protected nemory so that the system can properly deal
wi th nodul e access and device 1/Q

3-3

3.4.1 Header Protocol
Each nodule placed into protected nenory will incorporate a facsimle of the follow ng
code at the start of the nodul e:

ENTRY JR BEGA N ; Branch around |inkage

STUFHI DW $-3 ;To contain last byte used

DB MODBGN- ENTRY- 5 ;Cal cul ate |l ength of ' NAME

DB ' MODNAME' :Nanme of this nodul e

MODDCB DW $-3 ; To contain DCB pointer for nodul e

SPARE DW 0 ; Reserved by the DOS

. ; Any data area needed
BEG N EQU $; Fol | owed by nodul e code

Chapter 8, the appendi x, is another source of infornation concerning the header protocol.
It is sufficient for the illustration of device chains to understand that the MXDDCB wil |
contain a pointer that points to the Device Control Block established for the nodul e
during the execution of the SET library command. This pointer is passed in register pair
DE to the nodule's initialization code by SET. The programmer witing the nodul e code
adds a routine which |oads this val uue i nto MXDDCB.

3.4.2 Sanple DCB Structure

For the purpose of this illustration, let's imagine three active DOBs. The first DCB is
associated with the printer driver and has device specification of "*PR' (its devspec).
V¢ have also installed a filter via the SET command that perforns a backspace fol |l owed by
the output of a slash when it detects an ASOIl zero (0). This filter has a devspec of
"*30". Lastly, we have a filter that toggles a boldface node for a printer. This filter
has a devspec of "*BF'. To avoid confusion in the illustration, the devspec wll be used
to reference the DB and the nodul e nanes PRINTER SLASHD, and BCLDFACE will be used to
identify the entry point of the driver or filter modul e.

V¢ can now show thi s arrangenent of DCB contents and nmodul e MODDCB contents as fol | ows:

TYPE VECTGR NAME MDULE MIDDCB

| I
06 PRINTER PR | PR NTER *PR |

| |
47 SLASH) O | SLASHO/ *SO |

I I
47 BOADFACE BF | BQLDFACH *BF |

Figure 3-2: Initial DCB Table

Note that the DBs in figure 3-2 associated with the filters have bit-6 of the TYPE byte
set to indicate that they are filters. Also note that the MIDDCB pointer points to the
DB which points to the nodul e. Were a filter's MIDDCB is pointing to the DB of the
filter, this is indicative of an inactive filter.

3.4.3 Filtering

Filters are witten (as you wll later learn) to perform all 1/O via the @HNO
SuperVisor Call. This SVC uses the contents of MDDCB within the filter invoking the SVC
Thus, the filter I/O is independent of any address by being handl ed conpletely through
the SVC If you performa system comrand such as:

3-4

FI LTER *PR USI NG * SO

the operating systemw |l swap the first three bytes of the *PR DCB with the *SO DCB.
This arrangerment will establish that shown in figure 3-3.

| TYPE VECTGR NAME MODULE/ MCDDCB |
T) O
| 47 SLASD PR | PRNTER*PR | |
| | N
| 06 PRNTER 0 | SLASH/*SO | |
| | N
| 47 BOLDFACE BF | BOLDFACE/*BF | |
| | |

Fi gure3-3: DCB Tabl e Mdified

Let's follow what happens to an @UT which references the *PR device. The system passes
control to SLASHD (which is pointed to by the *PR vector). This filter perfornms its
character transformation, as required, and sends characters down the chain by picking up
the pointer contained in its MIDDCB (a pointer to the *SO DOB) then issuing the @HN O
SVC The SVC handles the call by passing control to PRNTER which is the pointer now
stored in the VECTOR field of *S0.

If we nowtry to issue the command:
FI LTER *PR USI NG *S0

the systemw Il prohibit it since the *SO Device Control Bl ock does not show up as a
filter (bit-6 of the TYPE byte is reset!). However, if we filter *PR using the *BF
devi ce, we achieve the arrangenment in figure 3-4 after the system swaps the first three
bytes of *PRwith the first three bytes of *BF.

Examne the arrangenent in figure 3-4 closely. Note that the contents of MIDDOB for each
nodul e are exactly what they were initialized to. Even though the *PR device has been
twice filtered, the nodule itself needs absolutely no change whatsoever. An *PUT to the
*PR device (say with an *PRT SVO nay be a little nmore conplicated now, but functions
perfectly well. The systemfirst passes control to BOLDFACE (which is pointed to by the
*PR vector). This filter perforns its necessary device stream nassaging and sends
characters down the chain by picking up the pointer contained inits MIDDOB (a pointer to
the *BF DCB) then issuing the @HN O SVC The SVC handl es the call by passing control to
SLASHO which is the pointer now stored in the VECTCR field of *BF. The SLASHD filter
perforns its character transformation, as required, and sends characters down the chain
by picking up the pointer contained inits MIDDOB (a pointer to the *SO DCB) then issuing
the @HN O SVC The SVC handles the call by passing control to PRINTER which is the
pointer now stored in the VECTCR field of *S0. Uon conpletion, a series of RET
i nstructions pass the return code back through the modul es naking up the chain.

3-5

| TYPE VECTCR NAME MCDULE/ MCDDCB |

| | | ,
| 47 BOLDFACE PR | PRINTER*PR | |
| |]
| 06 PRNTER SO | SLASHY/ *SO | |
| | N
| 47 SLASHD BF | BOLDFACE *BF | |
| | ||
| I

Figure 3-4: DB Tabl e Further Mdified

It is interesting to observe that the process of renmoving the filters from the device
chain is exactly the same as the process to add theminto the chain. W can unhook the
filters by exchanging the first three bytes of the DBs in the order of last-in first-out
(LIFQ. Thus if you exchange the *PR and *BF Device Control Bl ock TYPE and VECTCR fi el ds,
you will obtain the arrangement previously shown in figure 3-3. The RESET |ibrary command
does this for the entire chain.

By now you should be able to notice that we could equally as well rerove just the SLASHO
filter if we swap the bytes associated with the *BF and *S0 Device Control Bl ocks! Al
that is needed is a facility to do the follow ng:

Identify what filter (by nmodul e nane) is to be renoved;
Locate the filter in menory via the @TIMXD SuperVisor Call;
btain the MODDCB pointer to its Device Control Bl ock;

Scan through all DOBs to find the DOB pointing to the filter;
Then swap the three bytes.

agrwpdE

3.4.4 Routing

Routing conveys the facility of 1/O redirection. This function allows prograns to be
i ndependent of the physical device actually handling the 1/Q By maintai ning a constant
reference within a programto a particular DB, the physical I/0O can be channeled to some
ot her device conpletely transparent to the program This is achi eved through altering the
connection between the DB and its initial driver by reconnecting the DB to sone ot her
driver. The operating system handles all of the functions of inplementing the DCB
alteration when the ROQJTE library command is invoked. The "routed-to" device nay be
another DB identified by a devspec or it could be a disk file identified by a fil espec.
Let's ook at an exanpl e.

If we, for instance, invoke the conmand:
RQUTE *PR TO FI LE/ TXT: 3

the DC5 perforns a two-stage process. First, it establishes a 32-byte File Control Bl ock
and 256-byte buffer for the FILE/TXT:3 disk file. It places this "data" into high menory
prefixed with the header protocol. Second, it saves the "route-from VECTCR and TYPE
fields in the SYSDATA field of the DB while it revises the VECTCR to point to the
"routed-to" FCB. The TYPE field is also altered to show a ROUTE is in effect. The DCBs
wll nowlook like figure 3-5.

3-6

| TYPE VECTR SYSDATA NAME MCDULE/ MCDDCB |

I I
10 FCB-FILE PRNTER 06 PR | PRINTER*PR |

80 31-bytes of FCB data FOB

Figure 3-5: DCB Tabl e After ROUTE

Let's now follow an output request to the *PR device. The DO5 device 1/0O handler will
recogni ze the RQUTE bit (bit-4 of the TYPE byte) and update the register |inkage so that
the FCB will be pointed to instead of the DOB. MNoticing that the control block now
indicates a disk file (bit-7 of the TYPE byte), the 1/O handler will pass control to the
character 1/Ofile routines.

The action taken by the operating systemto reset a DOB that has been routed is to first
close the file, if a filespec was the initial "route-to", then recover the original TYPE
and VECTCR fromthe SYSDATA field.

3.4.5 Filtering a Routed Device

Let's suppose we have a text file that needs line feeds removed (it nay be a CP/M file
that uses CRLF as the end-of-line protocol). W could wite a programto read the file
and wite out to another file all characters that are not a line feed. W could al so use
atrap filter that is handy. V& want to be able to filter the file with this trap filter.
Wsing the routing identical to that shown in figure 3-5, establish the trap filter and
invoke it wth:

SET *LF USI NG TRAP (CHAR=10)
FI LTER *PR USI NG *LF

Figure 3-6 will now reflect the DCB structure after this series of comrands. It is now
easy to LIST the source file with the (P, T=N) option. This will direct a copy of the file
to the *PR device (while suppressing tab expansion). As can be observed fromthe figure,
the devi ce handl er passes *PR /O requests to the TRAP filter. After performng whatever
filtering is necessary, the @HN O request will reference the *LF Device Control Bl ock
(which is pointed to by the MIDDCB field). The device handler then notes that the ROUTE
bit is set and continues to control the @UT request as was done under figure 3-5. A
sinpl e "RESET *PR' upon conpletion will close the filtered FI LE TXT.

| TYPE VECTR SYSDATA NAME MCDULE/ MCDDCB |

I I
47 TRAP PRINTER'06 PR | PRINTER*PR |

80 31-bytes of FCB data FCB

I
10 FCB-H LE LF | TRAP/ *LF |

Figure 3-6: Filtering a Route

3.4.6 Linking
Linking is handl ed by establishing a |ink Device Control Bl ock storage area for each LINK
command i nvoked. For exanple, if you "LINK *DO TO *PR', we can illustrate the DCB area as

3-7

shown in figure 3-7. The *DO Device Control Bl ock now vectors to the newy established
*LO0 DB while the TYPE byte identifies the link. Notice that *LO has both the W DEO
vectors and a pointer to the *PR DB (we can conceptualize this as a two |egged fork).
The systemis device handl er recognizes that a link is in effect (from*DOs TYPE byte)
whereupon it establishes a fork via the link DB, *LO. It uses the third byte of LO's
SYSDATA field to store the direction indicator. After a return fromW DEO w thout error,
the device handl er takes the other fork leg (to *PR).

| TYPE VECTCR SYSDATA NAME MCDULE/ MODDCB |
| eeee e e |
| I ||
| 20 *LO DO | VIDEQ*DO | |
| | N
| 06 PR NTER PR | PRINTER*PR | |
| | ||
| o7 VIDEO *PR LO |
| |

Fi gure 3-7: Linking Devices

The legs of the fork are entered based on the 1/O direction and the return code froma
leg. @UT requests will be sent to the "left" leg of the fork. Providing no error is
encountered, the "right" leg of the fork will be entered. The return code passed back to
the caller will be either an error fromthe left leg, an error fromthe right leg, or a
no-error condition. Requests for @ET, wll be passed first to the left leg. Only if the
left leg has no input available will the right leg be entered. @TL requests are handl ed
i ke @UT.

Linking can be applied to a devspec that has been filtered, routed, or linked. There is
no restriction on conbi nations. Thus, you can link a device that is already |inked and
filtered and routed. Figure 3-8 depicts the result of linking a device that has already
been routed. It is left up to the reader as an exercise to derive the series of commands
that conposed the associated DBs/F(B as well as tracing through the device chain for
I/Q

| TYPE VECTR SYSDATA NAME MCDULE/ MCDDCB |

I I I
20 *L1 DO | VIDEQ*DO | |
I
80 31-bytes of FCB data FOB |

|

10 FCB/HLE DD |

07 V1 DEO *DD L1 |

Figure 3-8: Linking a Routed Device

3.4.7 Device Chain H erarchy

It is possible for the Device Control Block TYPE byte to have nore than one bit set in
the positions 3-7 (positions 0-2 usually have multiple bits set depending on the 1/0
supported by the driver). Because of this, the system nust utilize a priority level to
indicate what function is to be interpreted. The device 1/0O handler hierarchy is
illustrated in figure 3-9.

3-8

7. Dsk File character 1/0 |
3: NL device - no1/0O |
-4: RQUTE to DCB or FCB |
5: LINK to 2nd DCB |
6: FILTERed DCB or filter |

DO DE@D

Figure 3-9: DB H erarchy

3.4.8 Device Chain Sunmary

The precedi ng di scussi on shoul d shed a great deal of light on the handling of device I/0O
by the operating system You should also understand that in order to acconplish this
devi ce independence and flexible handling of character 1/Q the programrer of device
drivers and filters must adhere to a strict protocol of handshaking the nmodul es with the
operating system The next section will explore device I/O |ooked at fromthe standpoint
of the modules and drivers. Ohce you grasp these requirements, you wll be in total
control of filters and device drivers.

3.5 DEVI CE DRI VER/ FI LTER TEMPLATE

The system contains command |evel procedures that provide easy access to device
references so that nodifications may be nade to the way in which devices are treated by
the system Al devices require sonme type of driving program (a device driver) that is
used to handshake the device with the system and cater to the special features and
requirenents of the device hardware. Sone drivers are already inplenented within the
operating system to handl e standard devices. For instance, drivers for handshaking the
keyboard, video display, parallel printer port, and RS 232 serial port are included wth
the system

Sone devices are conpletely supported with the existing drivers in the total DCB
environnment. Qher devices may need a little nore support. The characteristics of a
driver may be nodified by the introduction of a FILTER. For instance, suppose your
printer required a line feed upon receipt of a carriage return to advance the paper. The
printer driver does not provide this function. Instead of witing a conpletely new
printer driver, only a filter need be included to add that single function (the FORVY FLT
filter which incorporates this function is usually provided with the systen).

The DCS provides two commands to aid in interfacing drivers and filters. The SET command
is used to define a new device, re-define an existing device, or install a filter modul e
while assigning it a device nane. FILTER is used to place the installed filter into an
exi sting device chain.

The SET command takes the device specification from the command line "SET *XY to
fil espec” and searches the Device Control Bl ock tables for a matching device name. If the
requested device is not defined in your configuration, SET establishes a Device Control
Bl ock for the new device. Control then passes to the DRRVER or FILTER with register pair
DE containing the address of the Device Control Bl ock record assigned to the "SET"
devi ce.

Register pair H. points to the command l|line character separating the DR VER Fl LTER
program filespec and optional paranmeters. This provides the nodule initialization
routines with the opportunity of parsing a paraneter string by using a paraneter table
and the @ARAM SuperVisor Call. SET provides a default file extension of /FLT since the
function of adding filters to the systemis the nore usual case.

The SET and FILTER commands are designed such that the DRIVER or H LTER program shoul d

first load into the User Program Region (starting at X 3000"). After parsing any options
or paraneters, the nodule initialization routine automatically relocates the resident

3-9

nmodul e to high nermory (or low nenory if sufficient space is available - see the section
on Placing Disk Drivers in chapter 4). HG¥ (or the Driver Input/Qutput Region pointer)
nust be properly set after your nodul e rel ocates.

Sanples of filters are provided in Chapter 8, the appendi x, which shoul d denonstrate the
technique of witing the relocating driver portion of your routine. The renaining
sections in this chapter discuss the handshaking and initialization requirenents
necessary for device drivers and filters.

3.5.1 I/OPrimtives

Devi ce independence has its roots in "character I/O'. The term shall apply to any 1/0O
passed through a device channel, one character or byte at a time. Three prinitive
routines are available at the assenbly |anguage | evel for byte I/Q Primtive is not used
here to inply rudimentary but rather elementary. Just as the atomis considered a basic
building block of nolecules, these byte 1/O primtives can be used to build |arger
routines. The three D5 SuperVisor Calls are designated @ET, @Ul, and @TL. @XET is
used to input a byte froma device or file. @UT is used to output a byte to a device or
file. @ITL is used to comunicate with the driver routine servicing the device (the
character file I/Oroutines ignore @ITL requests).

CGher SuperVisor Calls are available that performbyte 1/Q such as @BD (scan the *Ki
device and return the key code if a character is available), @SP (send a character to
the *DO device), and @RT (send a character to the *PR device). These functions operate
by first loading register pair DEwith a pointer to a specific Device Control Bl ock (DCB)
assigned for use by the device, then issuing an @ET or @WUT SuperVisor Call for the
respective input or output requests.

Wen the DOS device handl er passes control over to the device driver routine, the Z-80
flag conditions are unique for each different primtive. This provides a nmethod that the
drivers can use to establish what primtive was used to access the routine and thus
distribute the 1/O request to the proper driver or filter subroutine - according to the
direction of the request - input, output, or control! Figure 3-10 illustrates the FLAG
register conditions prevailing upon entry to a driver or filter.

NZ = @ET primtive |
NC = @UT primtive |
,NC = @TL primtive |

ZNO

Fi gure 3-10: Fl ag Conventi ons

Register B contains the 1/Odirection code (1 = GET, 2 = PUT, or 4 = CIL) while register
Cwll contain the character code that was passed in an @Ul or @TL SuperVisor Call.
Register I X will point to the TYPE byte of the Device Control Bl ock being referenced.
Registers BC, DE, H, and I X have been saved on the stack and thus are avail able for use.
Renenber that any given nodul e nmay have been filtered or |inked; therefore, do not expect
the DCB address in I X to be a constant over time. If the nodule is a filter, it wll be
invoking the @HN O SuperVisor Call. Thus it will be inportant to save those registers
that nust stay unchanged prior to invoking @HN Q

3.5.2 1/0 Separation

Now let's nove on to the device driver |inkage used to separate out the @ET, @UT, and
@TL calls. Renenber the FLAG register direction conditions shown in figure 3-10 that
were set according to the primtive byte I/O routine that got us to the driver. These
conditions provide the key to the separation process. Consider the follow ng protocol for
the driver or filter header.

3-10

ENTRY JR BEG N ; Branch around |i nkage

STUFH DW $-$; To contain |ast byte used
DB MODDCB- BEA N-5 ; Cal cul ate | ength of ' NAME
DB " MCDNAVE ; Name of this nodul e

MIDDCB DW $-$; To contain DCB pointer for nodul e
DW 0 ; Reserved by the DOB

BEGN EQ $

; =% =%

; Actual nodul e code start

;*:*—*
JR C, WASCET ; Qo i f @ET request
JR Z, WASPUT ; Q@ i f @UT request
JR WASCTL ; s @CTL request

At the entry of the driver, an absolute relative junp instruction executes which causes a
branch around sone data. Ignore, for a nmonent, the header data which is discussed in the
Chapter 8, appendix. At the label "BEAN', a test is made on the CARRY FLAG |f the CARRY
was set, then it nust have been the result of an input request (@XT). Thus, an input
request could be directed to that part of the nodul e which handl es character | NPUT.

If the request was not fromthe @ET primtive, the CARRY will not be set. The next test
isif the ZERO FLAGis set. The ZERO condition prevailed when an @UT primtive was the
initial request. Thus the junp to WASPUT can transfer to that part of the nodul e that
deal s specifically with character CQUJTPUI.

If neither the ZERO nor CARRY flags are set, the routine falls through to the next
instruction, a junp to WASCTIL - that part of the nodul e that woul d handl e @TL requests.
Qovi ously, the nodul e code that handl es @TL requests could be placed i mrediately after
the first two tests thereby obviating the need for the "JR WASCTL". Some nodules are
witten to assume that @TL requests are to be handled exactly like @Ul requests
although this is not recomrended. The processing of @TL requests is entirely up to the
function of the driver and the author thereof with the exception that the author should
not deviate fromthe functions identified in the @TL | NTERFAQ NG section. Wien a devi ce
has been routed to a disk file, the D35 will ignore @TL requests. That is, the @ITL
codes will not be witten to the disk file. The functions of @TL requests are covered as
a separate topic later in this chapter.

3.5.3 Device Driver/Filter Return Codes

e last topic needs to be discussed relating to drivers - the subject of register

handshaki ng conventions. On @¥ET requests, the character input should be placed in the
accunmul ator. On output requests (either @Ul or @ITL), the character is obtained from
register C It is extrenely inportant for drivers and filters to observe return codes.

Specifically, if the request is @ET and no byte is available, the driver returns an NZ
condition with the accumul ator containing a zero (i.e. (R1: LDAO : RET). If a byteis
avail able, the byte is placed in the accunul ator and the Z-flag is set (i.e. LD A CHAR :

CP A: RET). If there is an input error, the error code is returned in the accunul ator

and the Z-flag is reset (i.e. LD AERRNUM: (R A: RET). On output requests, the Z-flag
is set if no output error occurred. The accunul ator rmay be | oaded with the character that

was output; however, applications invoking an @WUI cannot depend on the accumul ator

containing the output character on return fromthe SVC - the character will, however,

still be contained in the C register! In the case of an output error, the accumul ator

nust be | oaded with the error code and the Z-flag reset as shown above.

3.5.4 Filter Interfacing

A filter module is inserted between the DOB and driver routine (or between the DB and
the current filter when applied to a DCB already filtered). The application of insertion
is perforned by the DG5S FILTER command once the filter nodule is resident and associ at ed

3-11

with a device nane. The function of residing a filter nmodule is a responsibility shared
by the SET library command and the programmer’'s filter initialization routine.

The usual linkage for a filter is to access the chained nodule by calling the @HN O
SuperVisor Call with specific linkage data in registers 1 X and BC Register I X is |oaded
with the filter's DCB pointer obtained fromthe menory header MXDDCB pointer. Register B
nust contain the 1/Odirection code (1 = GET, 2 = PUT, 4 = CIL). This code is already in
register B when the filter is entered. You can either keep register B undi sturbed or | oad
it with the direction code based on the primtive request. A so, output requests will

expect the output character to be in register C

3.5.5 Filter Initialization

The DCB poi nter obtained fromMDDB for the interfacing, is originally obtained fromthe
operating system It is passed in register DE by the SET command and is loaded into
MIDDCB by your filter initialization routine. The initialization routine also rel ocates
the filter to high (or low menory while adjusting any absol ute address reference with a
suitable relocation routine. The DC5 takes care of loading the DOB' s NAME field with the
associ ated device nane passed in the SET command. The filter initializer must attach
itself to the DCB assigned by the SET command by | oading the TYPE and VECTCR fields. The
TYPE field is loaded with an CRing of the filter bit (bit-6) and any valid direction bits
(bits 0-2). If the initialization front end transfers the DOB pointer fromDE to | X and
loads the filter's entry address into register pair H, the follow ng code coul d be used
to establish the TYPE byte and vector for a filter which supports CGET, PUT, and CIL:

LD (IX,40HCR 7 ;Ilnit DB type to
LD (I X+1), L ; FILTER GPCI1/Q
LD (I X+2) ,H ;& stuff vector

e final point concerns a test that should be nade by the filter initializer. The
operating system permts the execution of any load module. A filter programis a |oad
nodul e. To guard agai nst the execution of a filter programby inadvertently entering its
full file specification at D35 Ready, the system provides the programmer with an
indicator that execution is under control of the SET command. Wen SET passes control to
a filter program it wll set bit-3 of the CGFLAGS (the system request bit). Thus, by
testing this bit upon entry to the program an error exit can be taken if the system
request bit is not set. An error message of the form

Must install via SET

can be | ogged and the program aborted. The systemautomatically resets the systemrequest
bit upon regaining control at D05 Ready.

3.5.6 A Partial Filter

A filter nodule can operate on input, output, control, or any conbination based on the
author's design. The nenory header provides a region for user data storage conveniently
i ndexed by the nodule. An illustration of a filter follows. The purpose of the filter is
to add a line feed on output whenever a carriage return is to be sent. A though the
filter requires no data storage, the technique for accessing data storage is shown. Pay
close attention to the method of passing characters to the device chain (@HN O).

ENTRY JR BEA N :Branch to start
DW FLTEND- 1 ; Last byte used by nodul e
DB 6, ' SAMPLE ; Nane | ength and nane

MDDCB DWW $-3 ;Ptr to DCB | oaded by initialization
DW 0 : Reser ved

* —k —%

; Data storage area for your filter

DATAS EQU $

3-12

DATAL EQU $- DATAS
0

DB ; Data storage
DATA2 EQU $- DATAS
DB 0 ; Data storage
: * —% —k
; Start of filter
: —% =%
BEGQ N JR Z, QOTPUT @ if @Ur
-k —k —%
; @XET and @TL requests are chained to the next nodul e
; attached to the device. This is acconplished by falling
; through to the @HAINOcall. Note that the sanple filter
; does not effect the B register, so the filter does not
; have to load it with the direction code.
—% —%
FLTPUT PUSH I X ; Save our data pointer
LD 1 X, (MCDDCB) :@ab the DOB vector
RX01 EQU $-2
LD A @-N O ;& chaintoit
RST 40
PCP | X
RET
: * —% —k
; Filter code
: —% =%
QQOTPUT LD | X, DATA$;Base register is used to
RX02 EQU $-2 ; index data as (I X+DATAL),...
LD A C :Plu char to test
CP CR ;If not GR put it
JR NZ, FLTPUT
CALL FLTPUT ; else put it
RX03 EQU $-2
RET NZ : Back on error
LD C LF :Add line feed
JR FLTPUT
FLTEND EQ $
Pk ok ok
; Rel ocation table
Pk ok ok
RELTAB DW RX01, RX02, RX03
TABLEN EQU $- RELTAB/ 2

The relocation table, RELTAB, would be used by the filter initialization relocation
routine. Conplete filters are listed in Chapter 8, the appendi x.

3.5.7 External Access of Mdule Data

It is sometines necessary to access the data region of a resident nodul e fromoutside the
nodul e. Perhaps a utility to alter the data is useful (for instance, the SETCOM command
alters the data of the GOMdriver supplied with the system The @IMXD SuperVisor Call is
used to obtain two pointers. Onhe points to the entry point of the nodul e while the other
points to the MIDDCB field. If the data is located imrediately following the reserved
word in the nmodul e header, incrementing the MIDDCB pointer by four will point it to the
data area. The utility uses the nodul e nane assigned in the header to |ocate the nodul e

in menory. As an exanple, let's illustrate an update to DATAL in the above filter.
LD DE, FLTSTR$; Point to nodul e name
LD A, @ TMD ;ldentify the SVC
RST 40
JR NZ, NOTRES : Process "nodul e noot resident"
LD H, 4 ;Use pointer in DEto
ADD H., DE ; index past MXDDOB & reserved

3-13

LD A (VALUE) ; Plu your new val ue
LD (H),A & stuff into resident nodul e

i:LTSTI%IIB ' SAMPLE , 3 ; Search string

3.6 @CTL | NTERFACI NG TO DEVI CE DRI VERS

This section discusses the @ITL functions supported by the system supplied device
drivers. @ITL functions are invoked by loading register pair DE with a pointer to the
Device Control Block (DB), loading the function code into register C and issuing the
@CTL SuperVisor Call. The DOB address can be located by either using the @IDCB SVC or
CPENNng a File Control Block containing the device specification and using the FCB
addr ess.

The DC5 has assigned function codes for specific operations. A though these operations
are not universal across all drivers, the designated function code should be used only
for the operation assigned. Rarely will you find a driver that utilizes all of these
codes. A driver that accepts a function code to perform an operation should provide a
return code as if the request was @UT. Were a driver does not w sh to accept a specific
code or codes, it should return a "no-error” result. Function codes in the range <O-
31,255> are reserved by the operating system Function codes in the range <32-254> are
avail abl e for programmer use. The foll owi ng operations are assigned function codes:

CCDE CPERATI ON

0 Return status of device (Z = available, NZ = not available). Were
applicable, return an image of the status in the accumul ator.

1 Request a <BREAK> or force an attention interrupt.

2 Execute any driver initialization code.

3 Reset any driver buffers and clear any pending 1/Q

4 Interface a "wakeup" vector for interrupt driven drivers. Register 1Y should
contain the execution transfer address to be passed control after the driver
handl es the interrupt. On return fromthe @TL call, register 1Y wll contain
the previous "wakeup" vector. If a zero is passed in register 1Y, the
"wakeup" vectoring wll be disabl ed.

5 Reserved by the DCB.

6 Reserved by the DCB.

7 Reserved by the DCB.

8 Return the next character in the input buffer but do not enpty it fromthe
buffer. Areturn condition of A =0 and NZ indicates no character is pendi ng.
A <> 0 and NZ indicates an error while Z indicates success while A contains
the character.

9-31 These codes are reserved by the DOG.

The system supplied drivers support some of these functions. The follow ng sections cover
what control functions are supported and suggests possi bl e uses. The nodul e nane can be
used with the @IMD SuperVisor Call to obtain the entry point of the driver. This is
useful to obtain access to the data areas associated with each driver.

3.6.1 Keyboard driver [systemdriver assigned to *Kl]

A function value of X 03 wll clear the type-ahead buffer. This serves the same purpose
as repeated calls to @BD until no character is available. A function value of X FF will
remai n undocurented as its use is proprietary to Tandy Corporation and its function is
not supported across all licensed versions of LDO5S Version 6. Al other function val ues
are treated as @¥ET requests.

The nmodul e name assigned to this driver is "$KI". Its data area includes the follow ng:

3-14

O f set Content s

+0 Contai ns the |l ast character entered.

+1 Contains the repeat time check which is the systemis tiner val ue that when
reached will result in a repeat of the last character if the keycode scanned
has not changed.

+2 Contains the waiting time in tiner units that must transpire before a
character can initially be repeated. This value is altered by SETKI (W&dd).
+3 Contains the repeat rate in tinmer units. This value is altered by SETKI
(R=dd) .
3.6.2 Video driver [systemdriver assigned to *DJ
Al @TL requests are treated as if they were @UT requests.

The nmodul e name assigned to this driver is "$DO'. Its data area includes the follow ng:

O f set Content s

+0 Bits 0-2 contain the nunber of video lines to protect against scrolling. Bit
3 denotes the action to be taken for character values in the range <192-
255>, |If set, the values are treated as displ ayabl e characters. If reset,
the values are treated as space conpression codes in excess 192 (i.e. 0-63).
Bit 4 will denote the action to be taken for character values in the range
<1-31>. If set, the value is interpreted as a displ ayabl e character. |f
reset, the value is treated as a video function code as identified in your
operating systemuser manual . Bits 5-7 are reserved by the DCB.

+1 Contains the | ow order address of the cursor. You nust use the @DCIL
Super Vi sor to reference the cursor by row col um.

+2 Contai ns the high order address of the cursor. You nust use the @MDCTL
Super Vi sor to reference the cursor by row col um.

+3 Contains the character that is currently at the cursor position.

+4 Contai ns the character code defining the cursor.

3.6.3 Printer driver [systemdriver assigned to *PR|

The printer driver is transparent to all code values when requested by the @Ur
SuperVisor Call. That neans that all values from X 00" through X FF (0-255) can be sent
to the printer. The printer driver accepts a function value of X 00' via the @TL request
toreturn the printer status. If the printer is available, the Z-flag will be set and the
usual A register status image is an X 30'. If the Zflag is reset, the accumul ator will
contain the four high-order bits of the parallel printer port (bits 4-7).

The nodul e nane assigned to this driver is "$PR'. There exists no data area within the
printer driver.

3.6.4 Forns Filter [non-resident systemfilter for forms control]
If the FORMVS filter is attached to the *PR device, then various codes are trapped and
used by the filter according to user options as foll ows:

Code Filter Action

X 0D Generates a carriage return and optionally a line feed (ADDLF). It will form
feed as required.

X OA Is treated the sane as X 0D .

X 0C WIIl formfeed (via repeated line feeds if soft formfeed).

X 09' WI'| advance to the next tab col um.

X 06' WI1 set top-of-formby resetting the internal line counter to zero.

QG her character codes may be altered dependi ng on the user translation option (XLATE).

The FORVS filter's modul e nane is "$FF'. Its data area includes the fol | ow ng:

O f set Content s

+0 Cont ai ns the maxi mum | i nes per page.

+1 Is used by the filter as a line counter.

+2 Contains the maximum nunber of lines to print prior to a FORM FEED
oper ati on.

+3 Is used by the filter as a character counter.

+4 Contai ns the character value that is to be transl ated.

+5 Contai ns the character value that <+4> is to becone.

+6 Contains the nunber of spaces to indent after an automatic NEWINE is
i ssued.

+7 Bit O specifies that a LINE FEED is to be added after each carriage RETURN

Bit 1 specifies the mode of FORM FEED - a O indicates SOFT (nultiple line
feeds) while a 1 indicates HARD (send X OC to the driver).

+8 Contains the maxi mum nunber of characters to print on a line prior to
issuing an autonmatic NEWJINE A value of zero indicates that no automatic
NEW.INE is to be issued.

+9 Contains the colum of the left hand margin. The filter wll provide this
count of spaces after a physical carriage RETURN

3.6.5 COMdriver [non-resident systemdriver for the RS 232C
This driver handles the interfacing between the RS 232C hardware and character 1/0
(usuall'y the *QL device).

An @TL function value of X 00" will return an image of the RS 232 status register in the
accumul ator. The Z-flag will be set if the RS232 is available for "sending"” (i.e.
transmt holding register enpty and flag conditions matching as specified by the default
protocol or that established by the user via SETGM. A function value of X 01' will
transmt a "nmodem break" until the next character is @UT to the driver. A function val ue
of X 02 wll re-initialize the serial port hardware to the values |ast established by
SETCGOM A function value of X 04 wll enable/disable the WKEUWP feature. Al other
function values are ignored and the driver will return with register A containing a zero
val ue and the Z-flag set.

The WAKEUP feature deserves additional treatnent since it can be quite useful for
application software specializing in communications. The RS232 hardware is usually
equipped with the capability of generating a nachine interrupt when any of three
conditions prevail: transmt holding register enpty, received character available, or an
error condition has been detected (framing error, parity error, etc.). The GOM driver
makes use of the "received character available" interrupt to take control when a fully-
formed character is in the receive holding register. The COOM driver services the
interrupt by reading the character and storing it in a one-character buffer. GOM woul d
then normally return fromthe interrupt while it awaits the next @%ET request to take the
character.

An application can request that instead of returning from the interrupt, control is
passed to the application for | MMEDIATE ATTENTION It is inportant to note that this
action woul d be occurring during interrupt handling and any processing by the application
nust be kept at a minimumbefore control is returned to GCOMvia an RET instruction.

If you use an @TL function value of X 04', then register IY nust contain the address of
the handling routine in your application. Upon return fromthe @TL request, register 1Y
wll contain the address of the previous WAKEUP vector. This should be restored to the
GOM driver when your application is finished with the WAKEUP feat ure.

Wien control is passed to your WAKEUP vector upon detecting a "receive character avail -
able" interrupt, certain information is imrediately available. Register Awll contain an

3-16

image of the serial port UART status register. The Z-flag wll be set if a valid
character is actually available. The character, if any, is in the Gregister. S nce
system overhead takes a small amount of tine in the @ET SuperVisor Call, you nay only
have to @XET the character via standard device interfacing. This wll ensure that any
filtering or linking in the *CL device chain will be honored. 1f, on the other hand, your
application is attenpting to transfer data at a very high rate (9600 baud or higher), you
may need to bypass the @¥ET SuperVisor Call and use the character inmmediately avail abl e
inthe Gregister. Note that this will ignore any devi ce chain |inkage.

The nodul e nane of the CCMdriver is "$C". Its data area includes the foll ow ng:

O f set Content s

+0 Contains the handshake nask established according to the default
conventions (or those established via SETGOVM). This mask is used by OOM and
needs no concern fromthe progranmmer.

+1 Contains the serial port control image (this image nay turn out to be
dependent on specific RS 232 hardware.
Bit 7 Parity [1 = EVEN 0 = CDD|
Bits 6 &5 Wrd length [00 = 5; 10 =6; 01 =7; 11 = 8]
Bit 4 Nunber of STCP bits [1 =2 bits; 0 =1 bit]
Bit 3 Parity enable/disable [1 = disable; 0 = enabl €]
Bit 2 Transmt data [1 = enabl e; 0 = BREAK]
Bit 1 Data Termnal Ready lead [0 = ON 1 = CFF
Bit O Request To Send lead [0 = O\ 1 = GFF
+2 Contai ns the code for the baud rate.
+3 Flag to indicate KFLAGF support [1 = ON O = CFF] Efective with LDOS

6.2.0, this byte contains the BREAK character code, LO®BRK |[f non-zero,
then reception of that byte value from the commnications line wll cause
the BREAK hit of the KFLAGS to be set. If zero, no input character wll be
interpreted as a BREAK

+4 e-character buffer flag [80H = no character; 0 = character]

+5 Storage for the one-character buffer.

3-17

4. DI SK DRI VE | NPUT/ QUTPUT | NTERFACI NG

4.1 GENERAL DI SK DRI VE CONFI GURATI ON

This chapter is designed to fully explain the purpose of the Dsk Controller GCom
nmuni cations SuperMisor Calls. It wll also conpletely describe the fields constituting
the Drive Control Table. W will cover the protocol linkage that interfaces the disk
driver to the DO5. Finally, we wll discuss some of the concepts that are associated with
interfacing hard disk drives. There are two reasons for this chapter. Oh one hand, you
may be interested in using the disk primtives to wite disk-oriented utility prograns. A
good foundation in the functions of the controller printives is essential. Oh the other
hand, you may have the need to wite a disk driver that supports a hard disk controller.
In this case, it is essential to understand the requirements of the system for com
nmuni cating with disk devices. Before we can begin these topics, we nust gain a know edge
of the configuration of disk storage devices.

The DO sk (perating System incorporates the term "di sk" because the operating systemis
associated with and directly supports disk drive storage devices. A though many users of
smal |l mcroconputers nay be used to systens with two or three disk drives, the Version 6
DO5 supports up to eight disk storage devices. The nost typical type of disk drive used
in systens running Version 6 is the floppy disk drive. The hardware that interfaces the
floppy disk drive to the conputer is called a Foppy Dsk Controller (FDO. The
controller includes all of the electronics necessary to control and translate operating
system commands into control pul ses which the drive uses to perform mechanical actions
(such as head stepping, drive select, head |oad, etc) and data transfer.

The floppy disk drives are usually connected to the conputer in a nultiplexed arrange-
ment. This means that all data and control signals share a common cabling. Were nore
than one disk drive is connected to the cable, a nmeans of uniquely selecting one drive at
a time nmust be provided. Over the years, a standard of drive sel ection has been devel oped
that all floppy disk drives adhere to. This standard incorporates four separate drive
select lines between the conputer and all disk drives. These drive select lines are
designated DSO, DS1, DS2, and DS3. Each disk drive is then junpered to connect to only
one of the drive select lines. Sonetines the drives connect to all of the lines while
each plug on the cable severs all select lines but one - each cable plug a different
select line. Thus, the conputer hardware will, in general, support the handling of four
floppy disk drives [some conpanies nanufacture a multiplex device that uses the four
drive selects as a binary nunber thus nultiplexing up to 15 fl oppy drives].

Al though the typical hardware configuration supports four floppy disk drives, the DO5 has
provisions for referencing eight distinct |ogical drives nunbered O-7. W& use the term
"logical™ in case we have a single drive that is partitioned into miltiple drives wth
each partition being referenced by a different drive nunber. The four extra positions are
usually used with installations that connect hard disk drives in addition to the
floppi es. The D5 stresses device independence. D sk drives are treated no differently.
In order to gain a high level of independence, the DC5 uses a standardized set of
SuperVisor Call functions we will term "D sk Controller Communications"”. These SVCs are
primtive functions that should provide all of the activities needed to comunicate I/0O
requests to the disk controller that's interfacing a disk drive.

The system also maintains a Dive Control Table (DCT) that stores the paraneters
associated with each of the eight |ogical drives. Disk drive paraneters refer to how the
total storage space on a drive is divided up into addressable units. Hoppy disk drives
use a renovabl e flexi bl e nedia which has one or two surfaces coated with a magnetic |ayer
of particles. Hard disk drives use either fixed rigid platters or removable cartridges
that contain rigid platters al so containing magnetic |ayers of particles. Each platter of
a hard drive contains two surfaces. Regardless of the disk drive type, the nagnetic |ayer
of particles on each surface is nagnetized into concentric circles of storage areas

41

called TRACKs. Each track is then divided into subareas called SECTCRs. Each sector is
uniquely identified by a pattern of information precedi ng each sector called an ID Fl ELD
The division of a surface into sectors may be envisioned as a pie cut up into equal sized
pi eces. The process of generating each of the tracks and sectors is termed the formatting
process. The physical length of a sector will be greater on the outer tracks of the
surface than the inner tracks of the surface (simlar to the grooves of a phonograph
record). A though the nunber of sectors per track may vary from one nmedia type to
anot her, the nunber of sectors in each track of the sane nedi a must al ways be a constant.

The DO5 assigns nunbers to every sector, every track, and every surface. Surfaces are
nunbered consecutively by one starting from zero. Tracks are nunbered consecutively by
one starting fromzero at the outernost portion of the disk giving the innernost track
the highest nunber. A CYLINDER consists of the |ike-nunbered tracks on all surfaces. For
exanpl e, on a two-surface nedia, track zero of surface zero and track zero of surface one
are grouped together into cylinder zero.

Fl oppy disk drives use a read/wite head that is positioned lateral to the disk surface.
The head can step in towards the center of the disk and step out to the circunference of
the disk while the disk rotates on its hub. The rotational speed is 300 rpmfor 5-1/4"
floppy disk drives and 360 rpm for 8" floppy disk drives. Hard disk drives rotate at
speeds of 3600 rpm and hi gher. Because the physical lengths of the sector vary fromthe
outer to the inner track, the bit density of each sector varies per track. Therefore, the
amount of information stored in all sectors is dependent on the maxinum bit density
permtted in its shortest sized sector. Sone nanufacturers of conputer systens are using
a design which keeps the bit density per sector constant by use of a variable speed drive
which naintains a constant linear velocity of the surface across the head regardl ess of
the track position. This technique pronmotes a greater capacity for storage but requires a
nore precisely controlled drive. If such a drive control were utilized under this D35, a
suitable translation filter woul d be needed whi ch would permt the DO5 to think that each
track still contained the sane nunber of sectors.

If we concern ourselves with a 5-1/4" doubl e density floppy drive rotating at 300 rpm we
can calculate that a disk makes one conplete rotation every 200 ns (60/300). Since there
are 18 sectors per track, a sector's ID FIELD passes by the drive's head every 11.1 ns.
In a systemwhere the transfer of data to and fromthe disk is under the control of the
CPU rather than through auxiliary Drect Menory Access (DVA) hardware, the CPU spends its
time handshaking with the controller while transferring each byte of data. If we are
trying to access a series of sectors sequentially (as would be the case wth a

sequentially accessed file), there wll rarely be sufficient time for the CPU to
establ i sh the handshaking with the controller for the access of the next sector once it
has finished transferring the current sector. Thus, if we nunber the sectors

consecutively, nost likely the ID FIELD of the sector we next want to read has just
passed by the head and we must wait a conplete revolution of the disk before getting to
the ID FIELD again. In fact, the worst case would require us to wait just under 211.1 ns
per sector while the tine to read an entire track woul d be 3.8 seconds!

A practical solution to increasing the data transfer is to stagger the sector nunbers so
that the next sector to transfer is arriving at the head just after we start |ooking for
it. If we could read many sectors per single rotation, we could speed up the transfer of
data. This can be done when the disk is formatted. It can also be done when the disk is
accessed by neans of a lookup table that translates a logical sector nunber to a
staggered physical sector nunber. The process of staggering the sector nunbers is termed
| NTERLEAVE. An interleave of two nmeans that sequential sector nunbers are in every second
physical sector. An interleave of three uses every third position. For a single density
5-1/4 diskette, this pattern would be O0-5-1-6-2-7-3-8-4-9. An 18 sector per track
diskette with an interl eave of three woul d have a pattern of 0-6-12-1-7-13-2-8-14-3-9-15-
4-10-16-5-11-17. The interleave can be precisely calculated with know edge of the tota

time it takes to execute the nachine instructions between sector I/Q This is generally a
nmost difficult task; therefore, interleave patterns are generally derived enpirically.

4-2

Sonetimes, the apparent difference in access speed across different systens stens froma
poor selection of the sector interleave. The Version 6 DO5 uses the nethod of applying
the interleave during the formatting process. The sectors in each track are therefore
nunbered in a staggered order. [Msst CP/M systens fornmat sequential sector nunbers and
use a sector interleave translation table to translate sequential access requests to the
st agger ed nunber when the access is nade].

e other attenpt at increasing the sequential access of sectors is to examne the tine
between transferring the | ast sector nunber of a track and sector zero of the next higher
track [for the nmoment let's not conpound the situation of two sided diskettes where the
sectors on the second side rotate in an order reverse of the obverse side]. The time |ag
w ll include the sector interleave plus the track-to-track step tine. Thus it mght nake
sense to not start each track with sector nunber zero, but to optinmze the starting
nunber so that the position of sector zero will have its ID FIELD just comng up to the
head by the tine that the drive has stepped and is ready to scan for the ID FIELD. This
staggering is termed TRACK SKEW The DOS introduces such a skew during the formatting
process; however, such a skew is probably optimum for only one track-to-track stepping
rate. Wth all of this, we still can state that each track contains |ike nunbered sectors
- regardl ess of track nunber or surface. Therefore, each sector on a disk is designated
uni que by its respective sector, surface, and track nunbers.

Wen the operating system formats a diskette (or hard disk), all of the parameters
associated with the diskette are predetermned. Thus the nunber of sectors per track,
nunber of sectors per granule and thus the granules per track, nunber of sides (or
surfaces), and nunber of cylinders are all designated as well as the density of the media
in the case of floppy diskettes. Sone of these figures (density, sides, granules per
track) are witten to fields in the Ganule Alocation Table which is part of the
directory (see chapter 5). Qhers (sectors per track, sectors per granule, in addition to
the forner quantities) are part of the DCT fields. Wen the system attenpts to open a
file on a disk, it uses the @KDRV SuperVisor Call function to ascertain the availability
of the disk and then logs the disk once it finds it available. The function of "Il oggi ng"
wll update the DIRCYL field (providing the driver returns proper system sector error
codes), then update the DBLBIT field and the MAXCYL field based on information stored in
the GAT. It is up to the driver to sense the density of the floppy nedia [the "data
record not found" controller error is the usual indication that the driver nust toggle to
the alternate density. If a data record ID FELD is not readable under both single
density and double density, then the assunption is that the corresponding sector is not
on the disk and the error is passed back to the systenj. The toggling function of the
driver includes the updating of the CONFI GQRATION FIELD in the DCT appropriate to the
density bei ng sel ect ed.

The SVC disk primtives are funneled through a comon system routine that establishes a
| i nkage protocol between the operating systemand the disk device driver(s). Wen an I/O
request is invoked by a higher level SVC such as a request to READ a file record, the
request is translated to that disk primtive needed to satisfy the function. The |inkage
protocol is uniformacross all disk devices that are connected to the system This makes
the access of files transparent to size or nature of the disk device within the scope of
the DCT parameters acceptable to the system

4.2 DRI VE CONTROL TABLE (DCT)

The Drive Control Table (DCT) is the way in which the DC5 interfaces the operating system
with specific disk driver routines. This table is one of the exanples of the versatility
of the system as it enbodies within it the nethod of customzing the parameters of a
drive so that each disk drive may incorporate a unique set of parameters. For instance,
one drive may be a 35-track single headed drive. Another nmay be an 80-track dual headed.
Wile athird may yet be a 5 negabyte hard drive. Ingenuity and oddball hardware wll mx
well to provide an easy interface.

4-3

The DCT contains the information relating to the granule size. In the case of floppies,
granul e sizes are standardized by the system according to the disk size and density.
Chapter 5 contains nmore infornmation on granule allocation sizes. Data on the nunber of
sectors per track, nunber of heads, nunber of partitions, and maxi mum nunber of cylinders
is also contained in the DCT for each drive. This data is an essential ingredient in the
allocation and accessibility of file records and therefore nust be accurately introduced.
The table contains a maxi num of eight DCT records - one record for each |ogical drive
desi gnated O0-7. Each DCT record is fielded as foll ows:

4.2.1 DCT VECTCR - <Bytes 0-2>

This three-byte field specifies whether the logical drive position is enabled or
disabled. The systemw |l not attenpt to comrunicate with a logical drive nunber whose
DCT position is considered disabled. If the position is enabled, then the field will al so
contain the address vector of the disk driver nodule that comunicates wth the
controller interfacing the disk drive. The first byte of the DCT VECTCR woul d contai n an
X C3 value if the drive position is enabled (an X C3' represents an absolute junp [JP
nnnn] instruction in Z-80 nachine code). If the drive is disabled, this byte will be an
X " value (an X ' represents an absolute return [RET] from subroutine instruction in
Z- 80 nachi ne code).

The second and third bytes of the field will contain the vector transfer address of the
di sk driver nodul e that communicates with the controller. The operating systemtypically
pl aces the disk drivers in the low nmenory driver region. A "stock" system has avail abl e
in this region, menory sufficient to store additional drivers that are not supplied by
the system The DO5 will dynamcally use this |ow menory regi on based on requests to
i nvoke system drivers and filters (such as the GCOMDVR or FCRVWE FLT). A retrievable
pointer to the first available nenory address in this region can be used to locate the
origin of a user-supplied driver or filter (if sufficient space is available). This wll
be discussed in a | ater section.

4.2.2 DCT FLAG 1 - <Byte 3>
This field contains a series of sub-field parameters associated with the disk drive
specifications. The field is encoded as foll ows:

Bit 7 Set to 1 will indicate the disk device is "software” wite protected. It is
the responsibility of the disk driver to check this bit on any disk
primtive that references a WR TE operation (i.e. wite sector, wite system
sector, format track, or format device) and return a "Wite protected disk"
error code (error 15) if set.

Bit 6 If set to a "1", it indicates that the floppy diskette currently being
accessed is formatted in double density. If set to a "0" it indicates that
the diskette is single density. The disk driver is responsible for
mai ntaining this bit by recognizing the density of the disk it is accessing.
The bit is used both by the driver in the drive selection process and by the
systemin informati ve nessages by such things as DEMVI CE displays, D Rectory
di spl ays, and FREE displays. This bit is not referenced by the systemif the
DCT is associated with a hard drive (see bit 3 of this field).

Bit 5 If this bit is set to a "1", the drive associated with the DCT position is
an 8" drive. This bit will be a "0" if the drive associated with the DCT
position is a 5-1/4" drive. This bit is initially set by whatever installs
the disk driver (see the FLCPPY/DCT utility). In the installation of a hard
disk driver, this bit shoul d be set according to the size of the hard drive
- 5" or 8. In the case of floppy drives, the systemfornatter will use this
bit to adjust its fornatting data to 5" or 8". It is also used to adjust
i nformati ve nessages as nentioned under bit-6.

4-4

Bi t

Bi t

Bi t

Bits 1-0

This bit is used to store the side selection nunber for a current access of
a diskette. It is a storage area usable by the disk driver to place the side
nunber calculated from the relative sector passed in the disk printive
request. The system passes a rel ative sector nunber based upon the nunber of
sectors per cylinder. Oh a two-headed floppy disk drive, by dividing the
relati ve sector nunber by the nunber of sectors per track, the result wll
be indicative of the side selection nunber, 0 or 1. The routine perform ng
the calculation can then place the result in this bit of the DCT for the use
of the drive selection routine. The bit value will natch the side indicator
bit in the sector header as witten by the FDC Hard disk drivers wll use
storage space internal to the driver to hold such a result.

If this bit is set to a "1", it indicates that the DCI position is
associated with a hard drive (Wnchester). A "0" in this bit position
indicates a floppy disk drive is associated with the DCT position. The bit
is used by the system in informative messages by such things as DEVI CE
di splays, D Rectory displays, and FREE displays. In addition, the systems
@XDRV routine uses this bit to inhibit its automatic logging of a hard
drive while it restricts its checking to wite protect status only.

This bit is set by the systemto indicate the mnunumtine delay required
after selecting a floppy disk drive whose notors are not currently running.
It nmust be used by floppy disk drivers to adjust their time del ay between
selection of the floppy drive and the first poll of the status register. A
"1" value indicates the mninumdelay to be 0.5 seconds while a "0" val ue
indicates the delay to be 1.0 seconds. The tine delay can be introduced via
a request of the @AUSE SuperVisor Call with an appropriate count.

This subfield is used for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, the
field contains the step rate specification code (0-3) for the floppy disk
controller. Wth a Wstern Dgital 179X FDC or equivalent, the codes
correspond to a step rate of 6, 12, 20, and 30ns at an FDC clock speed of 1
Mt and 3, 6, 10, and 15ns at an FDC clock speed of 2 Miz. For hard disk
drives, this field is usually associated with the drive select code of the
hard di sk drive (binary val ue 0-3).

4.2.3 DCT FLAG 2 <Byte 4>
This byte contains additional drive specifications and paraneters. The field is encoded

as foll ows:

Bit

Bi t

Bit

7

6

Effective with 6.2, this bit is used to inhibit @KDRV. If set to a "1", no
@XDRV wi || be performed by @PEN when accessing that drive.

This bit is used as a flag to the formatter. If set to a "1", it indicates
that the controller is capable of double density operation. In this case,
the formatter defaults to double density formatting unless the user
overrides the default. If set toa "0", the formatter will default to single
density formatting. For controllers capable of double density operation,
this bit is usually set.

This bit is used for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, a
"1" indicates that the diskette currently nounted in the drive is a two
sided diskette while a "0" indicates that the diskette is a single-sided
diskette. This bit is updated whenever the disk is |ogged by the system or
whenever a program i nvokes the @KDRV SuperVisor Call. Note that if a dual
sided diskette is placed into a two-headed disk drive that previously

4-5

accessed a single-sided diskette, the systemw |l not recognize the second
side of the new diskette until the logging process. Wen the DCT is
associated with a hard disk drive, this bit may be used to indicate that a
| ogi cal cylinder represents two physical cylinders thereby providi ng support
for twice as nany cylinders as limted by the Ganule Allocation Table (the
GAT limts the nunber of logical cylinders to 203 - thus by using this bit,
hard drives to 406 cylinders can be supported as a single logical drive). In
the case of hard drives, this bit is terned the "DBLBI T" bit.

Bit 4 This bit is used to indicate the controller associated with the DCT position
is an "alien"” controller. The term "alien", refers to a controller that
does not return index pulses in its status register. The system uses index
pul se transitions in a finite tine period (usually 0.5 seconds) to detect
the presence of a rotating diskette. If a disk drive does not contain a
di skette, or does but the drive door is open, the status obtained on
conti nuous selection of the drive will not indicate the presence of any
index pulse transitions. By examning the state of the index pulse over a
period of tine corresponding to 2.5 possible rotations of a disk, the lack
of an CFF-ON-CFF transition state wll indicate that the drive is not
available. If a controller does not return the state of an index pulse in
the controll er status byte, then the systemw |l never be able to detect the
availability of the drive if it maintains the state transition exam nation
in the logging process. This bit should be set when such controllers are
used to inhibit the @KDRV routine from performng such an exam nation and
proceed to the configuration |ogging.

Bits 3-0 This subfield is used for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, the
field contains the physical drive address (1, 2, 4, or 8) corresponding to
the drive select line (DSO, DS1l, DS2, or DS3). Thus, only one of the four
bits will ever be set. Hard drive installations that partition a drive by
head, may use this field to indicate the relative starting head nunber of
the logical drive partition. This provides support for a drive of up to 16
heads al t hough 4 heads is typical.

4.2.4 CURCYL - <Byte 5>

This field is used for different purposes depending on whether the drive associated with
the DCT is a floppy drive or a hard drive. For floppies, the field is used by the disk
driver to store the current cylinder position of the disk drive assigned to the DCT
position. Since a Floppy Disk controller is used to access up to four different drives,
when it accesses a drive, its track register nust be loaded with correct infornation as
to the current track position of the head. The current cylinder position is naintained by
the disk driver in this storage field. The driver can then be use this field to rel oad
the FDC track register prior to a seek operation and update the field to the cylinder
requested in the seek. Hard disk controllers generally contain their ow internal track
register that is not accessible to a software driver. This neans that hard disk drivers
do not need to maintain the current cylinder position in this field. The field is thus
avail able for the storage of other data itens as required by the hard disk driver. Qher
data itens nay include the total quantity of heads on the physical drive (as needed by
XEBEC controllers), the conplex drive select code (as used by Lobo Drives UniVersal
Controller), or data associated with drive partitioning by cylinder rather than by head.

4.2.5 NAXCYL - <Byte 6>

This field contains the highest nunbered |ogical cylinder on the drive referenced froma
starting cylinder nunbered "0". Thus, a 35-cylinder drive would be entered as X 22', a
40-cyl inder drive as X 27", and an 80-cylinder drive as X 4F . A typical 153-cylinder ST-
506 conpatible w nchester drive would have an entry of X 98 . If a hard drive has nore
than 203 cylinders but |ess than 407 cylinders and is to be maintained as a single drive
(or one partitioned by heads), then the system nust access it as if each two physical

4-6

cylinders were a single cylinder with twice as much capacity (although the system will
still limt the logical cylinder to not exceed 256 sectors). In that case, the MAXCYL
entry will be half of the actual quantity and bit-5 of the FLAG2 field will be set. For
exanple, an SA-1000 drive (8" wnchester) has 256 cylinders, four surfaces, and 32
sectors per track. If this drive is treated as a single volume (no partitioning), the
MAXCYL entry is X 7F indicating the highest nunbered cylinder is 127 (128 cylinders).
The DBLBIT bit is set indicating a logical cylinder is conposed of two physical
cyl i nders.

4.2.6 CONFI GURATION FI ELD - <Bytes 7-8>
This two-byte field contains information concerning the physical space paraneters of the
di sk drive and how space is allocated per cylinder. Its entries are encoded as foll ows:

4.2.6.1 Byte 7

Bits 7-5 This subfield contains the nunber of heads (surfaces) assigned to the
logical partition of a hard disk drive. In the case of floppy disk drives,
this entry should be a B 000'. For exanple, a four-head hard drive with a
two-head partition would have a B 001' in this subfield. The entry is zero
relative, thus a one-head partition is B 000", a two-head partition would be
B 001', and an eight-head partition would be B 111'.

Bits 4-0 This subfield contains the highest nunbered sector on a track nunbered
relative fromzero. A ten-sector-per-track drive woul d show an X 09" entry.
A 32-sector-per-track hard drive would show an X 1F .

4.2.6.2 Byte 8

Bits 7-5 This subfield contains the quantity of granules per track allocated to the
disk drive according to the nunber of sectors per granule. Since the field
is 3-bits in length, the entry is offset from zero. Thus, one granul e per
track is entered as B 000", two as B 001, etc. In the case of floppy disk
drives, this figure is standardized for 5-1/4" and 8" nedia as identified in
chapter 5. If the DCT is associated with a hard drive, then the figure
entered here refers to the nunber of granules in a physical cylinder
according to the nunmber of surfaces. If the DBLBIT bit is set, this entry
then represents half of the granules on a logical cylinder. The total
granules per logical cylinder is conputed by the doubling the value
contained in this fieldif bit-5 of DCT FLAG2 is set. Let's illustrate this
again using the SA-1000 drive. If we configure the drive as a single vol une
with 16 sectors per granule, a physical track has two granul es per track.
Since the drive has four surfaces, a physical cylinder has eight granules.
However, since the DBLBIT bit nust be set to indicate double the 128
cylinders shown in the MAXCYL field, the system would have to doubl e the
granul es per cylinder conputing 16 GPC This is clearly in violation of the
systems upper limt of eight granules per cylinder maxi num Therefore, our
exanpl e SA-1000 drive would be configured with 32 sectors per granule, one
granul e per track, four granules per physical cylinder. The DBLBIT bit woul d
provide eight logical granules per logical cylinder. Therefore, this
subfield would have an entry to indicate four granul es.

Bits 4-0 This field contains the quantity of sectors per granule that is used in the
configuration of the disk. In the case of floppy disk drives, this figure is
standardi zed for 5-1/4" and 8" nedia as identified in chapter 5. Hard disk
drive granule sizes are assigned by the inplenentor of the hard disk drive
system

4.2.7 DI RCYL - <Byte 9>

This field contains the cylinder where the directory is located. For any directory
access, the system will use the contents of this field as a pointer to the cylinder

4-7

containing the disk's directory. The system attenpts to naintain the integrity of this
field by using the status returned when the driver reads a systemsector in contrast to a
non- system sector (chapter 5 discusses the use of data address mark conventions in disk
sectors). If the system expects to be reading a directory sector but does not get the
error code 6 ("Attenpted to read systemdata sector"), it wll read the BOOT sector and
obtain the directory cylinder storage byte located therein for a second attenpt to read
the directory sector. After an unsuccessful second attenpt (including whatever retries
are performed per attenpt by the driver), the system posts a read or wite error
depending on the original request. This error will eventually be classified as a GAT, HT
or DRECTCRY error if the attenpt was an 1/0O request for the GAT, HT or a directory
entry sector respectively. Realizing that most hard disk controllers do NOTI support a
data address mark convention, the hard disk driver nust simulate the READ SYSTEM SECTCR
error code when an @DSEC or @QRSEC request is made to the directory cylinder. S nce the
only indication of where the directory is located is contained in this field, it is
paranmount to the functioning of the hard disk environnent that this field be correctly
mai nt ai ned. The systems LOG command will always reload this field with the BOOT sector's
directory cylinder pointer. Thus, it may be necessary to highlight the function of LGGin
any witten information pertinent to the hard di sk system user.

I I I I I I I
VECT(R | FLAG| FLAG| OR | MX | DR |
ADDRESS | 1 | 2 |omn | on | o |

| | | | | I I

omon._
0O
OoW!m

H M
D A
S Xg_T_G

Figure 4-1: Drive Control Table Record

4-8

4.3 DI SK CONTROLLER COVMUNI CATI ONS

The function of D SK OGONTROLLER COMMUIN CATICNS is to communicate operating system com
mands to a disk driver so that the driver can translate these commands into commands
acceptable to the disk controller. Before we look at the command functions provided by
the system let's take a look at the commands available in a typical floppy disk
controller - the Western Digital 179X series. Figure 4-2 sunmarizes these commands. |f
you are interested in the detail ed specifications of such a controller, you shoul d obtain
the "FD 179X-02 F oppy D sk Formatter/Controller Famly" nanual published by the Wstern
Digital Corporation.

Command Pur pose

RESTCRE Recal i brate drive to cylinder O position

SEEK Reposition head to a specified cylinder

STEP Move the head one cylinder position

STEP IN Move the head one cylinder to the higher track
STEP QJT Move the head one cylinder to the | ower track
READ SECTCR Transfer the specified sector fromdi sk to CPU
WR TE SECTCR Transfer the specified sector fromCPU to disk
READ ADDRESS Transfer data fromthe next 1D FlI ELD encount ered
READ TRACK Transfer an entire track of data fromdisk to CPU
WR TE TRACK Transfer an entire track of data from CPU to di sk
FORCE | NTERRUPT Abort the pending controller operation

Figure 4-2: Foppy Dsk Control |l er Comrands

Since the D5 al so supports hard disk drives, let's look at the commands available in
some typical hard disk controllers. The following three figures wll summarize the
commands supported by the Lobo Drives UniVersal (WQ, the Wstern Dgital W 1000, and
the XEBEC S 1410 control | ers.

Command Pur pose

NO CPERATI ON Test if controller available

READ SECTCR Transfer the specified sector fromdi sk to CPU
READ DI SK Read entire disk wthout data transfer

WR TE SECTCR Transfer the specified sector fromCPU to disk
FCRVAT D SK Format entire disk

READ UNTI L FLAW Read di sk until encountering an error

Fi gure 4-3: Lobo-WC Control |l er Commands

If we conpare the typical Hard Disk Controller [let's abbreviate this termto "HDC']
commands to the commands available in the typical Floppy Dsk Controller [we will also
abbreviate this termto "FDC'], we find that the HOC general ly has very few commands for
communi cation between the CPU [nost hard di sk systens refer to the CPU as the "HOBT'] and
the controller. The S$ 1410 HDC has a preponderance of commands; however, close
examnation reveals many commands for testing and diagnostics. Each HDC rmentioned
perforns its own autonatic SEEK operation; therefore, it is generally not even necessary
for the HOC driver to utilize that command. The HDC driver will most typically involve
READ, WRI TE, and FCRVAT oper at i ons.

4-9

Command Pur pose

RESTCRE Recal i brate drive to track O

SEEK Position the read/wite head to a cylinder

READ SECTCR Transfer the specified sector fromdi sk to CPU

WR TE SECTCR Transfer the specified sector fromCPU to disk

FCRVAT TRACK Initialize the I D and DATA fields of the track
Fi gure 4-4: WD 1000 Control | er Commands

Command Pur pose

TEST DR VE READY Test if drive is ready

RECALI BRATE Recal i brate drive to track O

REQUEST SENSE STATUS Return the 4-byte drive/controller status

FCRVAT DRI VE Format entire disk

GHECK TRACK FCRVAT Check track for correct ID and interleave

FCRVAT TRACK Initialize the I D and DATA fields of the track

READ Read the specified sector(s) fromdisk to CPU

WR TE Wite the specified sector(s) fromCPU to disk

SEEK Position the read/wite head to a cyli nder

I N TIALI ZE DRI VE
CHARACTERI STI CS

Configure controller for drive

READ ECC BURST ERRCR
LENGIH

Read the byte contai ning ECC data

RAM DI AGNCSTI C

Test the controller's RAM buf fer

DRI VE D AGNGSTI C

Test the drive-to-controller interface

CONTRCLLER | NTERNAL

Performcontroll er self-test

DI AGNCSTI CS
READ LONG Read a sector and four ECC bytes
WR TE LONG Wite a sector and four ECC bytes

Figure 4-5: S 1410 Control | er Comrands

The process of drive selection is unique from HOC to HDC as well as the adapter that
electronically interfaces the HOC to the host. FDC drivers are typically nore invol ved
with the additional commands for stepping and seeking while performing a little nore
bookkeepi ng operations. There is also a great nore involvenent in the format operation
for the FDC driver over the HDC dri ver.

The DO5 provides 16 SuperVisor Calls that are used to pass operating system function
requests to a disk controller - be it an FDC or an HDC Fi gure 4-6 reviews these
functions that are detailed in chapter 7. If we try to correlate the SVC functions wth
the FDC commands, we observe that the DO5 provides no facility for requesting a STEP,
STEP QUJT, nor a FORCE INTERRUPT. This is not an oversight. The force interrupt is a
function that is not needed froma higher |evel such as the DC5 but woul d most |ikely be
usable directly within the FDC driver. A so, since the FDC does its own track stepping
via the SEEK request, the STEP command from the DCS is only needed during the fornat
operation. The DG5S limts this to STEP IN since the disk only needs to be stepped in one
direction during the format operation. The remaining SVGCs supply the higher |evel
functions to communicate all of the DOS requests to the controller.

4-10

NAME NUMBER FUNCTI ON DESCR PTI CN

@CSTAT 40 o* Test disk controller status

@LCT 41 1* Select a disk drive

@ANT 42 2 Initialize a disk controll er

@CRES 43 3 Reset a disk controller

@STCR 44 4% Restore a drive to cylinder O

@TEPI 45 5* Issue track step-in to controller
@EEK 46 6* Seek to a disk cylinder

@SLCT 47 7* Resel ect a busy drive until available
@R 48 8 Read ID field

@RDSEC 49 9* Read a di sk sector

@/RSEC 50 10* Verify the readability of a disk sector
@BDTRK 51 11 Read a di sk track

@DFMT 52 12* Format an entire drive

@\RSEC 53 13* Wite a disk sector

@NRSSC 54 14* Wite a disk directory sector

@WRTRK 55 15* Wite a disk track (fornmat data)

Figure 4-6: D sk Controller GCommunications
Not e: Functions asteri sked are supported by the DO5 fl oppy driver

Before taking a look at the HDC commands versus the disk controller communications
functions, let's address exactly what functions are used in the DC5 The DC5 spends a
great percentage of the controller's tine in reading and witing. These DG5S functions use
@OSEC to read disk sectors, @WRSEC and @WSSC to wite non-system and system sectors
respectively. Were the application is requesting verification (or where the D5 is
witing a system sector), then the @RSEC function is used which should read the
desi gnated sector w thout disturbing the disk file I/Obuffer. Next, the I ogging function
uses @WEEK and @SLCT to obtain status fromthe di sk. FORVAT uses @WRIRK for the FDC and
@DFMI for the HDC as well as @LCI, @STAR and @TEPIN in addition to the previous
SVCs. BACKLP and FCRVAT al so use @XCSTAT to nake sure that the drive is enabl ed. These
functions are indicated by an asterisk in figure 4-6. The four remaining functions,
@ANT, @CRES @DDR and @QOIRK are provided in case utility software needs these
requests for communications wth customdrivers [NOTE THAT THE FDC DR VER SUPPLIED WTH
THE DC5 DCES NOT' SUPPCRT THESE FUNCTI ONS] .

If we look at the HDOC commands, we observe that although the DO commands provided can
not uni quely request all of the commands of every controller, the DO5 conmands do provi de
the means to satisfy all of the necessary functions. In fact, some DO5 functions are not
even needed in the case of the HOC and hard di sk system

Wen the operating system passes the SVC request to the disk driver The manner in which
the driver controller linkage is established is by passing a function val ue contained in
register "B'" to the software driver that interfaces to the controller. S xteen functions
have been defined within the DG5S The table in figure 4-6 briefly describes these
functi ons.

At this point, it would be beneficial to discuss exactly what operations are perforned by
the operating system when it receives one of the D sk Controller GComunications SVC
requests. Al of the requests use register Cto reference the logical drive nunber. The
D5 uses this value to index the Drive Control Table and obtain a pointer to the DCT
record associated with the logical drive. After saving the index register, the D35 pl aces
the pointer into 1Y.

The DOS saves register pair BC and pl aces the function code corresponding to the function
as shown in figure 4-6 into register B. The DO5 will al so issue an @ANK request to bring
in bank zero. This operation will ensure that bank zero is resident for a disk 1/0
operation. It also limts the location of disk drivers or disk filters [like MIN TCR

4-11

avail abl e fromLogi cal Systens, Inc.] to reside in either the | ow nenory driver region or
in upper menory of bank zero. Wpon return fromthe disk driver, the DOB will restore the
previously resident RAMwi th anot her @ANK request.

The DC5 then places an "lllegal drive nunber” error code (32) into the accumul ator,
resets the Z-flag, then executes a "CALL" to a "JP (1Y)" instruction. The purpose of this
strange |inkage becones evident when we examine the result. The first byte of the DCT is
interpreted as an RET instruction if the drive is disabled. Since register 1Y is pointing
to that byte, the linkage will return back to the caller with the "Illegal drive nunber"
error. If the drive is enabled, the first DCT byte is interpreted as a JUW instruction
which will transfer control to the entry point of the driver. VW& can now show the uniform

register protocol upon entry to a disk driver. This protocol is illustrated in figure 4-
Regi st er Drection Condition/Val ue
AF = Irrel evant upon entry to the driver
B = Contai ns the function code of the request <O0-15>
C = Contains the logical drive nunber <O-7>
D = Contai ns the cylinder being requested <0-202>
E = Contains the relati ve sector being requested <0-255>
H. = Contains a pointer to the I/O buffer, where applicable
Y = Contains a pointer to the proper Drive Control Table entry
A <= Mist be | oaded with one of the error dictionary codes
BC <= Can be altered by the disk driver
DE <= Mist be preserved by the disk driver
H. <= Mist be preserved by the disk driver
Y <= Shoul d be preserved by the disk driver
F <= The Z-flag should be set if A=0, otherw se reset the Z-flag

Figure 4-7: D sk Driver Register Protocol

The remai nder of this section introduces a skeletal disk driver. It will contain only the
functions that are associated with protocol required by the DC5. There is no expectation
that you will learn howto wite a disk driver fromthis publication; you will Iearn how
to put the functions into your driver that are required by the DCS

4.4 Skeletal D sk Driver

ENTRY JR BEGA N :The driver starts with the
DW DVREND : DCB standard header
DB MCDPTR- ENTRY-5 ; Lengt h of ' MCDNAVE
DB ' MCDNAME ; Nane for @BTMOD requests

MDPTR DW 0 ; These pointers are unused
DwW 0

BEAN LD A B :The first test will return
R A ; to the caller on @XCSTAT
RET z ; and set the Z-flag with A=0
cP 7 ;
JP Z, RSLCT : Transfer on @SLCT
JP NC, DI SKI O ; Transfer on physical 1/0 request

-k —k —%

; FUNCTI ONS 1- 6 NEED TO BE PARSED

-k —k —%

SLCT . ; As required

;*—*—*

RSTOR . ; As required
LD (1Y+5),0 ; Needed if a floppy

-k —k —%

STEPI . ;As required if a floppy
INC (1Y+5) ; Bunp CURCYL

4-12

SEEK . ; As required
LD (1Y+5),D ; Updat e QURCYL

: The RSLCT function should return with the hardware
; wite protection status. Set bit 6 of the accumul at or
; toindicate the drive is wite-protected

* —k —%
RSLCT . ; As required
-k —k =%
DSKIO BIT 2,B :Test if read or wite comrands
JR NZ, WRO\VD :Transfer if functions <12-15>
-k —k —%
; Functions 8-11 need to be parsed
-k —k =%
RDHDR . ;If you want to support it
-k —k =%
RODSEC . ;Read a sector of data
VRSEC . ;Don't alter the buffer
—% —%
; On RDSEC and VRSEC, if the read referenced the
; directory cylinder and was successful,
; then you need to return an error code 6. A floppy
; di sk controller will provide the indicated status.
; Hard di sk users nay have to conpare the requested
; cylinder to DRCYL in the DCT.
* —k —%
RDHDR . ;1f you want to support it
-k —k =%
WOV BIT 7, (1 Y+3) ; Check for software wite protect
JR Z, WRCMVDL :Transfer if no soft WP
LD A 15 ;Set "Wite protected disk" error
RET
WRCMDL . ; Now parse functions 12-15
-k —k =%
HOFMT . ; May be used for hard drives
-k —k =%
WSEC . iWite with X FB data address mark
-k —k =%
WRSSC . Wite with X F8' data address mark
-k —k =%
WRTRK . ;May be for floppy or hard drives
-k —k =%
; NOTE: Hard di sk drivers may want to excl ude the FCRVAT
; function fromthe driver if a separate formatter is
; suppl i ed. This guards agai nst program crashes inadvertantly
; entering the driver with a register setup depicting FCRVAT
-k —k =%
; Error codes returned to the system under abnor nal
; conditions nust be in the error dictionary. Hard di sk
; drivers should attenpt to translate the controller error
; code to the nost reasonabl e DOS equi val ent .
-k —k —%

DREND EQU $-1

4.5 HARD DI SK ALLOCATI ON SCHEMES

The integrator of a hard disk usually has to consider some form of hard disk partition-
ing. Wy is this to be considered? A hard disk has a mninum of 5 negabytes of storage
space. The demand for storage never abates; thus, 10 negabyte, 20 negabyte, and hi gher
capacities are being integrated into the mcroconputer environnent. The version 6 DC5 has
[imtations on the total size of a storage device that is addressable as a single vol une.
These are limtations stenmng fromthe size of the directory. A device is linited to a
maxi nrum of 256 sectors per |ogical cylinder, and 203 |ogical cylinders. Gven a standard
sector size of 256 bytes, the DO5 can address 13.3 negabytes total. If the target drive

4-13

exceeds this capacity, then it nust be divided into nore than one drive in order to
address its total capacity.

The DO5 also limts the nunber of files per logical drive to 256 (of which two are taken
up by the BOOI/SYS and DR SYS files). Athough data base applications nay find the nost
practical arrangenment is a single volune, the typical use of even a 5 megabyte drive wll
find the file slots filled before all of the space is allocated - thus space is wasted
[It is possible and highly practical for the hard disk integrator to consider conbini ng
individual static files into menbers of a partitioned data set to free up multiple file
slots. PROPaDS is a utility program capable of creating and naintaining such files].
Therefore, even with the snaller 5 megabyte drive, there exists a rationale for
partitioni ng.

Ohce the decision is nade to divide a drive, the question arises as to how to go about
such a division. There are three nethods of partitioning. Qne is to divide the drive by
cylinder. For exanple, Take a 306 cylinder, four head, 10 megabyte drive. This can be
divided into two drives with the first logical drive using cylinders 0-152 while the
second uses cylinders 153-306. The DC5 actual ly uses |ogical cylinder nunbers 0-152 for
both partitions and the hard disk driver must recognize that it needs to translate the O-
152 for the second partition into the range 153-306. bviously, one can divide up the
drive into partitions snmaller than 5 nmegabytes. A second nethod is to divide the drive so
that all of the cylinders are included in a single logical volume, but volumes use
different heads. Thus, the previously nentioned drive could be divided into two, three,
or four logical drives. A third nethod would be to translate the drive' s physical
paraneters into quantities acceptable to the system while staying within the maxi hum
nunber of 256 sectors per |ogical cylinder.

There are advantages and di sadvantages to each nethod. First, our discussion of floppy
configurations pointed out a use for addressing as much capacity in a single cylinder
prior to having to step the drive. This neans that we would | ean towards divisions by
cylinder. However, if we are alternately selecting different partitions, the drive nust
be stepped a great distance to get to each partition. Another problemis that a head
crash would essentially wipe out all drives since a single head is used on all
partitions. ' course, if the drive physically has nmore than 406 cylinders, it must be
partitioned by cylinders (or translation) to address the higher cylinders.

Partitioning by head provides |ess sectors per physical cylinder; however, since hard
drives today usually use very fast buffered seek, the stepping time to advance a track is
mninmal. A head crash will also only wipe out a single |ogical drive.

Transl ati on nethods can be useful with drives whose paraneters do not |end thenselves to
the DB limts (a 39 sector per track drive, for instance). A drawback to translation
nethods is the difficulty in keeping |ogical cylinders referencing a physical cylinder.

The inportant point in any method, is that the driver nust be witten to do the
conversions as the operating systems reference is to logical cylinder and sector within
that cylinder when it issues an I/O request. The driver may nake use of the CURCYL byte
and FLAG?2, bits 3-0 for storage of partition specific data. The driver can also
establish its own table when these DCT fields do not provide sufficient space to store
the quantities needed by the driver.

Let's take a ook at a few exanpl es. The nunber of file slots identified assumes that all
logical drives are considered to be data drives. Subtract 14 from the nunber for each
SYSTEM drive. In the first, case we will use an ST-506 type drive which has four heads
and 153 cylinders. This will be the division of a 5 megabyte drive partitioned by head.
Figure 4-8 illustrates the DCT paranmeters to divide the drive into two |ogical drives of
2.5 negabytes each. Notice that we are using 8-sector granules (2K). Since we can have at

4-14

nost, eight granules per cylinder, the mnimum granule size is 2K V¢ could have
al l ocated sixteen sectors per granule providing four granul es per cylinder.

START NAX # COF IVAX T SPG DR FI LE

HEAD CyL HEADS SEC CyL SLOTS

0 152 2 32 8 8 76 254

2 152 2 32 8 8 76 254
Figure 4-8: 5 Meg divided; 2-2.5

V¢ could just as well divide this drive into a 1.25 megabyte volune and a 3.75 negabyte
volune. This arrangenment is illustrated in figure 4-9. This arrangement forces us to
al l ocate granul es in 16-sector bl ocks.

START NAX # COF IVAX &T SPG DR FI LE

HEAD CyL HEADS SEC CyL SLOTS

0 152 1 32 4 4 76 238

1 152 3 32 6 16 76 254
Figure 4-9: 5 Meg divided; 1.25-3.75

If we divide up the drive into three |ogical volures, we wll devel op two vol unmes of 1.25
negabyt es each and one volume of 2.5 megabytes. This arrangenent will also provide nore
file slots.

START NAX # COF IVAX &T SPG DR FI LE
HEAD CYL HEADS SEC CyYL SLOTS
0 152 1 32 4 4 76 238

1 152 1 32 4 4 76 238

2 152 2 32 4 8 76 254

Figure 4-10: 5 Meg divided, 2-1.25, 1-2.5

The last division of a 5 megabyte 4-head drive to illustrate is as four separate drives
of 1.25 negabytes each. This partitioning provides the greatest nunber of file slots.
Were the environment will have a great deal of small files, it is probably best to use
thi s arrangenent.

START NAX # COF IVAX &T SPG DR FI LE
HEAD CYL HEADS SEC CYL SLOTS
0 152 1 32 4 8 76 238

1 152 1 32 4 8 76 238

2 152 1 32 4 8 76 238

3 152 1 32 4 8 76 238

Figure 4-11: 5 Meg divided; 4-1.25

DBLBIT START NAX # COF MAX GPT SPG DR FI LE

HEAD CYL HEADS SEC CYL SLOTS
1 0 152 2 32 4 16 76 254
1 0 152 1 32 4 8 76 254
1 1 152 1 32 4 8 76 254

Figure 4-12: 5 Meg divided; 2-2.5

Five megabyte drives exist that use 2 heads (a single platter) and incorporate 306
cylinders. If we want to divide up this type of drive by head, we can have at nost, two
partitions. Since this drive requires the DBLBIT, it will be illustrated in figure 4-12
as both a single and a dual volume. An inportant observation is that a |ogical cylinder

4-15

is two physical cylinders. Although the drive has 306 cylinders, the cylinder figures in
the DCT reflect the logical quantities of half as many. Also, the granules per track
figures are representative of a PHYSICAL cylinder. These figures will be doubl ed by the
systemin the cal cul ati on of granules per cylinder since the DBLBIT is set.

From these figures illustrating the configurations of 5 megabyte drives, it should be
relatively easy to devel op the necessary Drive Control Table data for drives of 10, 15,
20, and hi gher negabyte capacity.

4.6 Placenment of Disk Drivers

Disk drivers are usually placed into nemory by an initialization program which executes
fromthe SYSTEM (DR VE=n, DR VER="filespec") library coomand. This D5 facility wll |oad
and execute your driver initializer identified by the "filespec". A file extension of
"/DCT" is the default. Uoon passing control to this DCT driver, register pair DE will be
pointing to the DCT record associated with the DRVE=n entry. If the DR VE paraneter was
omtted fromthe SYSTEM command, register pair DE will contain a zero. The function of
the initializer is to prepare the driver and DCT tables according to any paraneters
required for setup of the driver. The initializer then identifies where in menory the
driver is to be placed, relocates any absolute address references, then places it into
nmenory. The last function is to insert the entry address into the Drive Control Table.

e other point concerns a test that should be nade by the driver initializer that is to
be invoked by the SYSTEM command. The operating systempermts the execution of any | oad
nmodul e. A driver programis a load nodul e. To guard against its execution from DO5 Ready
by inadvertently entering its full file specification, the system provides the programmer
with an indicator that execution is under control of the SYSTEM command. Wen SYSTEM
passes control to a driver program it wll set bit-3 of the GFLAGS (the system request
bit). Thus, by testing this bit upon entry to the program an error exit can be taken if
the systemrequest bit is not set. An error nessage such as the follow ng can be | ogged
and t he program abort ed.

Mist install via SYSTEM (DR VE=n, DRI VER="fi | espec")

The DC5 provides a limted device driver region in low menory. This is where the
keyboard, video, printer, and floppy disk drivers are located. User specified device
drivers (such as the OOM driver) are placed in this region if sufficient space is
avail able. CGherwise, they are relocated to the high menory region and protected. The
MenDl SK driver nust reside in the low menory device driver region. A hard disk driver
supplied by LSl is usually placed in | ow nenory. The |ow nenory driver region is filled
fromthe bottomup in contrast to the high nenory region which is filled fromthe top
down. The maxi num address usable is X 12FF . The systemhas a poi nter which naintains the
first available nenory address in this region. This driver /O region pointer is always
positioned as the two bytes just prior to the *KI Device Control Block. Let's take a | ook
at some partial routines to obtain and use this driver pointer.

-k —k —%
; (btain | ow nenory driver pointer
-k —k —%
LD DE 'IK ;Locate pointer to *KI DCB
LD A, @sTDCB : via @sIDCB SVC
RST 40
JP NZ, | CERR :No error unless K cl obbered!
DEC H ; Decrenent to driver pointer
LD D (H) ;Plu hi-order of pointer,
DEC H ; decrement to and p/u
LD E (H) ; lo-order of pointer
LD (LCPTR+1), HL ; Save ptr for later
-k —k —%

; Make sure driver will fit into (PA NTER) - X 12FF

4-16

LD H_, DVREND- DVRBCN ; Cal cul ate driver |ength

ADD H., DE ;Start address + driver length

LD (SVEND+1) , HL ; Tenp save of new poi nt er

LD BC, 1300H : Maxi mum address + 1

XCR A ; Reset carry flag

SBC H., BC :No roomif START+LENGTH >= 1300H

JP NC, NCROOM : fit inlowcore

* —k —%

; Move driver into | ow nenory after rel ocating

; any absol ute adddress ref erences

—% —%

LCPTR LD H,-3 ; Plu saved driver pointer
LD E (H) :CGet the | o-order,
I NC H ; bunp to hi-order,
LD D (H) ; &get it for start of nove
PUSH DE :Save start address for ENTRY
PUSH H ; Save driver nenory pointer
LD H_, DVRBGN :Point to start of driver
LD BC, DVREND- DVRBQ\, Cal ¢ driver |ength
LD R ; & nove into driver region
PCP H- ; Now pi ck up the saved
LD (H),D ; pointer again and reset
DEC H. ; it to point to the
LD (H),E : NEWfirst avail abl e address
PCP DE :Recover for ENTRY stuff into DCT

If insufficient roomexists in the [ow nmenory driver region (perhaps it is already filled
wth COMD/R MnD SK/DCT, FORW FLT, or some additional driver/filter), then your
initialization program should obtain the high menory pointer (HG¥) via the @ G
SuperVisor Call and relocate the driver to high menory. Rermenber the H GH$ pointer points
to the first available high nenory address but the nenmory is filled towards | ower
addresses. The sanple filter listed in Chapter 8, the Appendi x, illustrates a high menory
rel ocati on.

4-17

5. The DCS Directory Structure
5.1 GENERAL DI RECTORY CONVENTI ONS

The di sk operating system uses a one-level directory structure to logically associate a
file specification (including the access of any record in that file) to the physical
storage space on a disk occupied by the file. This DO5 directory occupies an entire
cylinder on the disk drive (or logical disk drive if a hard disk is partitioned into
miltiple logical drives). The directory itself is considered a file with the specifi-
cation "D R SYS'.

The directory is conposed of three primary parts: A Qanule Alocation Table (GAT)
contains infornmation pertinent to the allocation of physical disk space. The CGAT al so
contains data that may be considered the di sk pack identification. The second part of the
directory is a Hash Index Table (HT) which is used by the DO5 to speed access to
individual directory records associated with each file stored on the disk. The last part
of the directory contains the access infornation pertinent to each disk file. This
information is terned the FILE D RECTCRY ENTRY records.

Before delving into the detailed descriptions of each part, one inportant item must be
di scussed concerning the directory. The soft-sectored floppy disk format was first
designed by IBM for the 3740. This format defined an identification field for each
physi cal sector on the disk. Preceding the sector is a byte termed the "Data Address
Mark”. 1BM defined two distinct data address marks: An X FB was assigned for a sector
that contained actual data. An X F8' was assigned to a "deleted" sector (i.e. one whose
data is deleted and the sector is available for use). The convention of use for these
data address nmarks in this operating systemis to assign the XFB to indicate any
"ordinary" sector on the disk - an "ordinary" sector is any sector that is not part of
the directory. The X F8 data address mark is used for all sectors constituting the
directory cylinder.

D sk controllers used to access the disk will generally return an indication in a status
register of the data address mark detected when reading any given sector. The D05
capitalizes on this scheme by using the returned status as an indicator of what type of
sector was read - a directory sector or non-directory sector. Wien a read-sector (@ODSEC)
service request is satisfied by a disk driver, it is the responsibility of the driver to
return this status to the caller. If a "normal" sector is successfully read, the driver
returns a no-error indication. If a directory sector is successfully read, the driver
returns an error code 6 - "Attenpted to read systemdata record".

The first sector (cylinder 0, sector 0) of each disk contains a pointer to the cylinder
containing the directory. This pointer is the third byte of the sector. There is also a
field in the Drive Control Table which contains a copy of that pointer. Wen the system
requests a read of a directory sector and is returned status which indicates that a
regul ar sector was read instead of a directory sector, it assumes that the disk has been
changed since it last accessed the directory and the new disk has its directory on a
different cylinder. The system then updates the Drive Control Table (DCI) field by
reading the first sector and retrieving its directory cylinder pointer. This condition is
used by the system to constantly keep current information on the disk each tine the
directory cylinder is accessed [the @PEN and @N T SuperVisor Calls al so act to keep the
system current on the disk structure by logging the disk identification via the @KDRV
SuperVisor Call and updating its DCT fields accordingly].

Because of the Data Address Mark conventions enployed in the DO5 two SuperVisor Calls
have been provided to read/wite directory sectors. The @ODSSC (SVG85) wll read a
directory sector and update, where necessary, the Drive Control Table directory cylinder
field. The @WRSSC (SVG54) can be used to wite a sector to the directory and properly

5-1

identify the correct Data Address Mark. Directory sector wites should be verified with
the @RSEC SuperVisor Call. Expect to obtain an error code 6 as previously noted.

5.2 THE GRANULE ALLCCATI ON TABLE (GAT)

The Ganule Alocation Table (GAT) contains a section of information pertinent to the
al l ocation of physical storage space on the disk. For floppy disk drives, this section is
conposed of two tables: The ALLQOCATICN table specifies what areas of the disk are
al l ocated or unavailable for use while the LOOKQUT tabl e specifies what areas of the disk
are physically unusable. For w nchester drives (hard drives), the LOXXQJT table is not
used and the ALLOCATION table is extended to include the GAT space nornally used by the
floppy |ockout table. The CGAT is wholly contained in the first sector of the directory
cylinder. Additional fields are stored within the GAT sector that describe the disk (its
pack identification). The CGAT also contains certain data specific to the formatting
configuration of the disk.

An entire disk is divided into cylinders (tracks) and sectors. The standard sector size
is 256 bytes in length. Each cylinder has a specified constant quantity of sectors.
Because the DC5 uses a single 8-bit register to commnicate sector nunbers, it wll
support a maxi num of 256 sectors per cylinder. A group of sectors is allocated whenever
addi tional space is needed. This group is termed a GRANLLE and is always a constant size
for any given disk. This does not nean that the granule is the sane size for all disks.
The size of a granule generally increases with the increasing size of the disk storage
device. The choice of a granule size is a conpronise over mninmum file |lengths and
overhead during the dynamc allocation process. It is sonewhat dependent on the nunber of
sectors per cylinder because the nunber of sectors per granule nust divide evenly into
the nunber of sectors per cylinder.

The ALLGCATION and LOCKQUT tables are actually bit maps that associate one granul e of
space per bit. One byte is used to store the information on a single cylinder; therefore,
the GAT is configured to provide for a maxi num of eight granules per cylinder. In these
tables, each bit that is set indicates a corresponding granule in use (or |ocked out). A
reset bit indicates a granule free to be used. In the GAT allocation and | ockout bytes,
bit O corresponds to the first relative granule on a cylinder (denoted as granule 0). Bit
1 corresponds to the second relative granule (denoted as granule 1), bit 2 the third
(denoted as granule 2), and so on through bit 7 for the eighth granule (denoted as
granule 7). This is illustrated in figure 5-1.

| 71 6] 5] 4] 3| 2| 1| 0] | 7| 6] 5| 4| 3] 2| 1| O| | 7| 6] 5| 4] 3] 2| 1| O] | . . .
| cylinder O || cylinder 1 || cylinder 2 |]...
[11111001122111000(221211000]]...

Figure 5-1: Alocation Table Representation

A 5-1/4" single density diskette is fornatted at ten sectors per track, five sectors per
granule, two granules per track. A two-sided diskette has tw ce the nunber of granules
per track available on each cylinder. Thus, the single density single, sided 5-1/4"
configuration will use only bits O and 1 of each GAT byte. The renaining GAT byte will
contain all 1's - thereby denoting unavail able granules. A 5-1/4" doubl e density diskette
is formatted at 18 sectors per track, six sectors per granule, three granul es per track.
Thus, this configuration will use bits 0, 1, and 2 of each GAT byte. The standard granul e
al l ocation conventions used by the DO5 for floppy diskettes are as shown in figure 5-2.

5-2

SECTCRS PER SECTCRS PER GRANLES PER MAXIMM |

I

| TRACK GRANULE TRACK CYLINDERS |
| eeemseemes e e |
| 5" SDEN 10 5 2 96 |
| 5" DDEN 18 6 3 96 |
| 8" SDEN 16 8 2 77 |
| 8" DDEN 30 10 3 77 |
| |

Figure 5-2: Allocation for Single-S ded F oppy Media

Figure 5-2 assumes single sided nedia. The D05 supports two-sided operation within the
confines of the hardware interfacing the physical drives to the CPU A two-headed fl oppy
drive functions as a single volune with the second side treated as an extension of the
first in atrue cylinder structure. Abit in the Drive Control Table (DCT) indicates one-
sided or two-sided drive configuration.

A winchester-type hard disk also has a simlar configuration. However, since many
different sizes of wnchesters are available, the recommended configurations for
representative hard drives are covered in chapter 6 - D SK FI LE ACCESS AND CONTRQL. For
the purposes of this chapter, it is sufficient to nention that hard drives may use the
first 203 GAT bytes to reference ALLCCATION i nformation (positions X 00° through X CA').
Hard drives that exceed 203 physical cylinders require remapping or partitioning. Mthods
of achi eving renmappi ng and partitioning are al so di scussed in chapter 6.

The followi ng describes the structure of the Ganule Allocation Table and the infornation
contained in it. The nunbers in angle brackets indicate the relative positions of the
field within the GAT. Figure 5-3 illustrates the entire GAT.

5.2.1 ALLCCATION TABLE - <Bytes X 00" - X 5F >

This table contains a bit inage of what space is available for use (and conversely what
space is not available). CGAT+O corresponds to cylinder 0, GAT+1 corresponds to cylinder
1, GAT+2 corresponds to cylinder 2, and so forth. As previously noted, bit 0 of each byte
corresponds to the first granule on the cylinder, bit 1 corresponds to the second
granule, etc. A "1" indicates the granule is not available for use. The amount of GAT
space assigned to this table permts a nmaxi num of 96 cylinders; however, the fornatter
restricts the format of 8" media to 77 cylinders.

5.2.2 LOCKQUT TABLE - <Bytes X 60' - X BF >

This table contains a bit inage of what space has been | ocked out fromuse. QG anul es may
be | ocked out because they either do not physically exist (i.e. granules 3-7 on 5-1/4"
doubl e density floppy nmedia) or the verify process of the floppy formatter had detected a
bad sector in a granule. The table corresponds on a cylinder for cylinder basis as does
the allocation table. It is used specifically during mrror-image backup functions to
determne if the disk has the available capacity to effect a backup of the source
di skette.

5.2.3 EXTENDED ALLCCATI ON TABLE - <Bytes X C0' - X CA >

This table is used in hard drive configurations by extending the ALLGCCATION table from
X 00" through X CA' and omtting a distinct lockout table. The table then provides a
capacity of up to 203 cylinders. The hard drive DBLBIT bit is available in the Drive
Control Table to permt conbining two physical cylinders into a single |ogical cylinder
provided the limt of 256 sectors per cylinder is not exceeded. This arrangenent
therefore provides support for up to 406 cylinders. Lockout infornation, where avail abl e,
is generally denoted by setting the appropriate bit assigned in the ALLCCATION table.

5-3

Hard drives generally cannot be backed up in a mrror-inage nanner and the BACKUP utility
wll prohibit it by autonatically entering the RECONSTRUCT node.

5.2.4 DCS VERSION - <Byte X CB >

This field contains the operating system version used in formatting the disk. D sks
formatted under DC5 6.0 will have a value of X 60° contained in this byte. It is used to
determne whether or not the disk contains all of the paraneters needed for DC5 6.0
oper ati on.

5.2.5 CYLINDER EXCESS - <Byte X CC >

This byte contains the nunber of l|ogical cylinders in excess of 35. It is used to
mnimze the time required to conpute the maxi mrumcylinder formatted on the diskette and
to update the Drive Control Table. It is designed to be excess 35 so as to provide
conpl ete conpatibility with previous systens that restricted the floppies to 35 tracks
and did not maintain the byte. This field is read to update the Drive Control Table
during the process of |ogging the disk by the @KDRV SuperVisor Call process.

5.2.6 DI SK CONFI GURATION - <Byte X CD >
This byte contains data specific to the formatting of the diskette. It is fielded as
fol | ows:

Bit 7 Set to "1" indicates the disk is a DATA disk; thus all but tw directory
slots are available for data files. Set to a O indicates that the disk is a
SYSTEM di sk which reserves 14 additional directory slots for systemfiles
providing a maxi rumof 240 directory entries for data files.

Bit 6 Set to "1" inplies double density formatting. Set to O inplies single
density formatting.

Bit 5 Set to "1" indicates two-sided floppy nedia. Set to O indicates single-sided
f1 oppy medi a.

Bit 4 This is reserved for internal systemuse.

Bit 3 This is reserved for internal system use.

Bits 2-0 Gontain one |less than the nunber of granules per track that were used in the
formatting process.

5.2.7 DI SK PACK PASSWORD - <Bytes X CE - X CF >

This field contains the 16-bit hash code of the disk master password. Its storage is in
standard |oworder high-order fornmat. The password itself nust be conposed of the
characters <A-Z, 0-9> with the first character al phabetic. The 16-bit hash code can be
obtained fromthe DG5S for any given password. This is done by placing the password string
into an 8-character buffer left-justified and padded wi th spaces, and then invoking a
system overl ay.

The follow ng code illustrates this operation.

HASHWW LD DE, PSWDPTR :Point to the 8-char buffer
LD A OE4H ; Speci fy password hash function
RST 40 ;l1ssue the RST instruction

The 16-bit password hash code will be returned in register pair H.. Registers AF, B, DE
and H. are altered. The operating systemw ||l not return to the address foll owi ng the RST
40 instruction when the SVC function code is an internal system request code (i.e. has
bit-7 set) but will return to the previous caller. Thus, it is necessary to CALL this
routine.

5-4

5.2.8 PACK NAME - <Bytes X DO' - X Dr' >

This field contains the diskette pack nane. This is the sane nane di spl ayed at boot up if
the diskette is a system diskette used for the boot operation [specifically, the boot
nane is obtained from the System Information Sector but is nanaged coincidentally by
FCRVAT and ATTRIB. It is also the name displayed during a FREE or DR or obtained by the
@I R SuperVisor Call. The name is assigned during the formatting operation or re-
assi gned during an ATTR B renam ng oper ati on.

5.2.9 PACK DATE - <Bytes X D8' - X DF >

This field contains the date that the disk was formatted or the date that it was used as
the destination in a mrror-inage backup operation. If the diskette is used during a
BQOI, this date will be displayed adjacent to the pack name [actual |y, the boot date is
obtained fromthe SystemInformation Sector but is managed coincidentally by BACKUP].

5.2.10 RESERVED FIELD - <Bytes X EO" - X F4'>

This field is reserved for future use under DG5S version 6. It fornerly contained the AUTO
command buffer under earlier versions of the D05 however, since Version 6 supports 79-
character comrand |lines, the SystemInfornation Sector now hol ds the AUTO command buffer
for use during a BOOTI operati on.

5.2.11 MEDI A DATA BLOCK - <Bytes X F4' - X FF >

Effective with LDOS 6.2.0, this field contains a header sub-field and a sub-field
replicating the last seven bytes of the drive control table in use and associated wth
the nedi a when the nedi a was fornatted.

Bytes 0-3 contains an X 03" followed by the string, "LSl".
Bytes 4-10 replicates the last seven bytes of the DCT during fornat.

00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF

Note: "#"= DOB Version;"+"'= Cyl Excess;"*"= Configuration

| I
| I
00		00		
o1]	01			
02	ALLCCATI ON TABLE	02		
03]	03			
04		04		
05		05		
06		06		
07		07		
08	FLOPPY LOOKOUT TABLE	08		
09	HARD DR VE ALLCCATI ON TABLE	09		
OA		OA		
OB		OB		
OC	EXTENDED ALLOC	# _+ _*	_MW	OC
oD	__ PACK NAME	PACK DATE	OD]	
OE	RESERVED	OE		
OF		OF		

|

|

|

|

|
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF |
I
I
I

Figure 5-3: Ganule Allocation Table Illustrated

5-5

5.3 THE HASH | NDEX TABLE (HIT)

The Hash Index Table is the key to addressing any file in the directory. It is designed
so as to pinpoint the location of a file's prinary directory entry with a mni mumof disk
accesses. A mnimumquantity of disk accesses is useful to keep system overhead | ow whil e
at the sane tine providing for rapid fil e access.

uzo
> o
mz &
m w
ommN
> XP
—4—-o0

Figure 5-4: File NAW EXT buffer

Wen an application requests the system to open a file, the system nust |ocate that
File's Prinary Drectory Entry (FPDE) record which contains the disk storage data needed
to address the file. The procedure that the system uses to locate a file's FPDE is to
first take the file name and extension and construct an 11-byte field with the file name
left justified and padded with blanks so as to fill out eight positions. The file
extension is then inserted, padded wth blanks, and wll occupy the three |east
significant bytes of the 11-byte field. The resulting string is illustrated in figure 5-
4. This field is then processed through a hashing al gorithmwhich produces a single byte
value in the range X 01' through X FF (a hash value of X 00" is reserved to indicate a
spare HT position). The follow ng code may be used to obtain the one-byte hash code for
an 11-character NAME EXT buffer.

HASHSPEC LD H., SPECPTR :Point to the 8-char buffer
LD A, OD4H ; Speci fy filenane hash function
RST 40 ;lssue the RST instruction

The one-byte hash code is returned in the accunulator. Registers AF, B and H. are
altered. The operating system will not return to the address following the RST 40
i nstruction when the SVC function code is an internal systemrequest code (i.e. has bit-7
set) but will return to the previous caller. Thus, it is necessary to CALL this routine.

Each file's hash code is stored in the Hash Index Table (HT) at a position which is
associated with the FPDE record containing the file's access infornation. After the CPEN
routine obtains the hash code for the file identified in the file specification, it
searches the HT for a natching hash code. Since nore than one 11-byte string can hash to
identical codes, the opportunity for a "collision" exists (a collision is where two or
nore file names result in the sane hash code). For this reason, the search algorithmwill
sequentially scan the HT for a matching code entry and when found, wll then read the
FPDE record corresponding to the matching HT position. CPEN will then conpare the file
nane/ ext stored in the FPDE record with that provided in the file specification. If both
match, the file's FPDE directory record has been found. If the two fields do not match,
the HT entry was a collision and the algorithm continues its search fromwhere it |eft
off. If a match to the hash code is not found in the HT, the file does not exist on that
disk drive. If the user passed a drive specification (drivespec) as part of the file
specification, a "File not found" error will be returned. If no drivespec was passed, the
systemwi || search all drives in logical nunber order starting with drive 0. If the @NT
SuperVisor Call was used to open the file, the systemw |l first use @PEN to deternne
the possible existence of the file. If @PEN advises that the file has not been found,
then @NT will create the file by obtaining a spare HT position then constructing the
correspondi ng FPDE

5-6

The position of a file's hash code entry in the Hash Index Table is called the Drectory
Entry Code (DEC) for the file. Al files will have at |east one DEC A contiguous bl ock
of granules allocated to a file is termed an EXTENT. The FPDE record contains fields to
hold the data on four extents. Files that use more than four extents because they are
either large (an extent can address a maxi num of 32 contiguous granules) or fractured
i nto non-contiguous space require extra directory records to hold the additional extents.
These additional records are terned the File's Extended Directory Entries (FXDE) which
al so have four extent fields each. A Drectory Entry Code is also used to associate an
FXOE with a HT entry. Thus, a file will have DECs for each FXDE record and use up nore
than one filename slot in the HT. Therefore, to maximze the quantity of file slots
avai |l abl e, you shoul d keep your files below five extents wherever possible.

The FPDE and FXDE records are contained in the renaining sectors of the directory
cylinder. The Drectory Entry Codes are mapped to the FPDE FXDE records by each DEC s
position in the Hash Index Table. Conceptualize the HT as eight rows of 32-byte fields
as shown in figure 5-5. Each rowwi |l be mapped to one of the directory entry records in
a directory sector. The first HT rowto the first directory entry record, the second HT
rowto the second directory entry record, and so forth. Each colum of the HT field (the
0-31) is nmapped to a directory entry sector. The first colum is nmapped to the first
directory entry sector in the directory cylinder (not including the GAT and HT).
Therefore, the first colum corresponds to sector nunmber 2, the second colum to sector
nunber 3, and so forth. The maxi num quantity of HT colums actually used wll be
governed by the disk fornmatting according to the formula: N = (nunber of sectors per
track times the nunber of sides) nmnus two.

In the 5-1/4" doubl e density single-sided configuration, there exist eighteen sectors per
cylinder - of which two are reserved for the GAT and HT. S nce only sixteen directory
entry sectors are possible, only the first sixteen positions of each HT field are used.
CGher formats will use nore or less colums of the HT, depending on the quantity of
sectors per cylinder in the formatti ng schene.

This arrangenent works nicely when dealt with in assenbly |anguage for interfacing.
Consi der the DEC value of X 84'. If this value is |loaded into the accunul ator, a sinple:

AND 1FH ;Strip off row and
ADD A 2 : calcul ate sector

wll extract the sector nunber of the directory cylinder containing the file's directory
entry. |If that same value of X 84' was operated on by:

AND OEOH ; Strip off sector and keep row

the resultant value will be the loworder starting byte of the directory entry record
assuming that the directory sector was read into a buffer starting at a page boundary.
This procedure nakes for easy access to the directory record. The system provides two
routines, @ RRD and @I RN that wll read/wite the correct directory entry sector
corresponding to a DEC The directory 1/O uses the systembuffer and a pointer in the H
register pair is automatically positioned to the proper FPDE (the buffer is on a page
boundary for physical 1/O. @ RMR perforns verification after wite!

The followi ng figure may help to visualize the correlation of the Hash Index Table to the
directory entry records. Each byte val ue shown represents the position in the HT and is,
in fact, the Drectory Entry Code value. The actual contents of each byte will be either
an X 00" indicating a spare DEC or the one-byte hash code of the file occupying the
corresponding directory entry record.

5-7

---------------- COLUMNS --smmmmmmmmmaan |
Rowl 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF |
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F |

Row 2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F |
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F |

Row 3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F |
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F |

Row 4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F |
70 71 72 73 74 75 76 77 78 79 7TA 7B 7C 7D 7TE 7F |

Row 5 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F |
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F |

|

Row 6 AD Al A2 A3 A A5 A6 A7 AB A9 AA AB AC AD AE AF |
BO Bl B2 B3 B4 B5 B6 B/ B8 B9 BA BB BC BD BE BF |

|

Row 7 llaBH GGG BCABCDCEE |
DO DL D2 D3 D4 D6 D6 D7 D8 D9 DA DB DC DD DE DF |

|

Row 8 EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF |
FOFL F2 FF F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF |
---------------- COLUMNS ---------------- |

Note: Valid DECs for 5-1/4 1-sided DDEN i n BAO_DFACE |

Figure 5-5: Drectory Entry Codes

The eight directory entry records for the directory entry sector nunbered 2 would
correspond to DEC assignments in HT positions 00, 20, 40, 60, 80, A0, O, and EO. The
positions shown in figure 5-6 are reserved for system overlays on a system disk (as
determned fromthe configuration field defined in the section on the Ganule Al ocation
Table). These entry positions, of course, correspond to the first tw rows of each
directory entry sector for the first eight directory entry sectors. S nce the operating
system accesses these overlays by the DEC position in the HT rather than by file nare,
these positions are always reserved for system disks. Data disks reserve only positions
00 (BQOI/ SYS) and 01 (D R SYS).

00 -> BOOI/SYS 04 -> SYS2/SYS 20 -> SYS6/SYS 24 -> SYS10/ SYS
01 -> DR SYS 05 -> SYS3/SYS 21 -> SYS//SYS 25 -> SYS11/ SYS
02 -> SYSO/SYS 06 -> SYSA/SYS 22 -> SYS8/SYS 26 -> SYS12/ SYS
03 -> SYS1/SYS 07 -> SYS5/SYS 23 -> SYS9/SYS 27 -> SYS13/SYS

Figure 5-6: Drectory Entry Codes reserved for SYSTEMfil es

The Hash Index Table limts the design of the systemto a naxi mum support of 256 files on
any one logical drive. Wth the current state of the art in hard disk drive technol ogy,
that limt may prove too snall a nunber. Cbviously, additional file slots are avail able
by partitioning a hard drive into two or nore logical drives with each partition
containing its own directory. The custom zed hard disk driver then translates the | ogi cal
cylinder/sector information to physical paraneters. This concept is discussed in detail
in chapter 4.

5-8

5.4 THE DI RECTORY RECORD STRUCTURE

The disk directory contains the information sufficient to access all files on the disk.
V¢ have already shown that disk space allocation is defined in the Ganule Al ocation
Table. W have also revealed in the previous section how the operating systemuses file
hash codes stored in the Hash Index Table to locate the Drectory Entry Code for each
file. Each DEC refers to a specific directory entry record. A directory record is 32-
bytes in length. Thus, each directory entry sector contains eight directory entry
records.

The HT was shown to contain a maxi num of 256 Drectory Entry Codes. Since there are
eight entries per sector, the maxi mum nunber of directory entry sectors is 32 (256
divided by 8). If we add one sector for the GAT and one for the HT, we discover that the
maxi rum | ength of the entire directory can be 34 sectors. The directory nust be contai ned
conpletely on a single cylinder. Therefore, the exact length of the directory and hence
the nunber of directory entries is highly dependent on the size of a cylinder. For
exanple, an 18-sector per cylinder formatted disk will have 16 directory entries and
hence 16 times 8 or 128 directory entries. Consult the section on the HT for the fornmul a
cal culating the nunber of directory sectors.

I
SECTCRS PER D RECTCRY Fl LES AVA LABLE PER D RECTCRY |

CYLI NDER RECCRDS TOTAL SYSTEM D SK DATA D SK |
___ |

Note: Hard drive values showtotal entries for all partitions.
"<x>" denotes the nunber of |ogical drives.

I

I

|

| 5" SDEN1 10 8 64 48 62 |
| 5" SDEN2 20 18 144 128 142 |
| 5" DDEN1 18 16 128 112 126 |
| 5" DDEN2 36 32 256 240 254 |
| 8" SDEN1 16 14 112 96 110 |
| 8" SDEN2 32 30 240 224 238 |
| 8 DDEN1 30 28 224 208 222 |
| 8" DDEN2 60 32 256 240 254 |
| e e |
| 5" HARD-<1> 128 32 256 240 254 |
I I
| 5" HARD-<2> 64*2 32%2=64 256*2=512 240*1+ 254*2=508 |
| 254* 1=494 |
| 5" HARD <4> 32*4 30%4=120 240*4=960 224*1+ 238%4=0952 |
| 238*3=938 |
I I
I I
I I

Figure 5-7: Drectory entries for various nedi a

The first two directory entries of the first eight directory entry sectors are reserved
for systemoverlays on a SYSTEM di sk. A DATA disk reserves only the first directory entry
of the first two directory entry sectors. The total capacity of files is equal to the
nunber of directory sectors times eight (since 256/32 = 8). The quantity available for
use will always be reduced by 16 on a SYSTEM di sk or by two on a DATA di sk to account for
those entries reserved for the operating system Figure 5-7 shows the record capacity
(file capacity) of each floppy format type. The dash suffix on the density indicator
represents the nunber of sides formatted. The figure also lists representative val ues for
5 negabyte w nchester drives (typical ST-506 conpatible: 4 heads, 32 sectors per track,
153 tracks per head).

5-9

Because of the Data Address Mark conventions enployed in the operating system two
SuperVisor Calls have been provided to read/wite directory entry sectors. The @ RRD
(SVG87) will read a directory entry sector into the system buffer when passed a drive
and DEC Register pair H. is autonmatically positioned to the proper directory entry in
the buffer corresponding to the DEC (the buffer is on a page boundary for physical /0.
This buffer can be witten back to the directory using the @ RMAR (SVG88), again by
specifying only the drive and DEC

Any sector of the directory nay be requested for 1/0O by using either @DSSC (SVG 85) for
reading (which will update the Drive Control Table directory cylinder field where
required) or @WSSC (SVG 54) can be used to wite a sector to the directory and properly
identify the correct Data Address Mark. Directory sector wites should be verified with
the @RSEC SuperMisor Call. Expect to obtain an error code 6 as previously noted. This
procedure makes for easy access to the GAT and HT directory records. Abbreviated
contents of the directory nmay also be retrieved via the @CD R and @RAMD R Supervi sor
Call s.

Finally, since the directory is conceptualized as a data file and contains its own
directory entry, DR SYS, the directory can be treated as a file and GPENed - just like
any other file. READ access is granted for this method. Under no circunstances shoul d you
attenpt to wite to the directory by defeating the password protection when the directory
is opened as a file and accessed as such. Failure to heed this warning may nake the
di rectory unreadabl e.

The expert programrer nay find useful information in the directory - especially for those
that wite catalog prograns. Since the directory infornation is so vital to the
friendl iness of programs, the system displays a great deal of information on each file
via the directory command. The foll ow ng provides detailed i nformation on the contents of
each directory entry field. The nunbers contained in angle brackets refer to the relative
byte(s) of the field in the record.

5.4.1 ATTR BUTES - <Byte 0>
This byte contains the entire attributes of the designated file. It is encoded as
fol | owns:

Bit 7 This bit flag is used to indicate whether the directory entry is the file's
primary directory entry (FPDE) or one of its extended directory entries
(FXDE). Since a directory entry can contain information on up to four
extents, a file that is fractured into nmore than four extents requires
additional directory records. If this bit is a "0", the entry is an FPDE If
set toa"1", the entry is an FXDE

Bit 6 A SYStemfile is noted by setting this bit to a "1". If set to a "0", the
file is declared a non-system file. It is used as a reference in DO
utilities and as a doubl e check when the DOS overlay | oader accesses a file
inthe reserved HT entries.

Bit 5 This bit is used to designate the corresponding file as a Partitioned Data
Set. The PDSis a library file nanaged by a utility programcal |l ed PRO PalS.
The utility is available fromM SCBYS.

Bit 4 This activity bit is used to indicate whether the directory record is in use
or not. If set to "1", the record is in use. If set to a "0", the directory
record is not active although it nay appear to contain directory
information. A previously active file is renoved only by resetting this bit,
renoving its HT entry, and deallocating its space. Thus, the FPDE is left
intact except for this bit.

5-10

Bit 3 Specifies the visibility; if "1", the file is INVMsible to a D Rectory
display or other library function where visibility is a paraneter. If a "0",
then the file is declared VI S bl e.

Bits 0-2 ontain the access protection level of the file. The 3-bit binary value is
encoded as fol | ows:
0 - FULL 1- REMOE 2 - RENAME 3 - WRTE
4 - UPPDATE 5 - READ 6 - EXEC 7 - NO ACCESS

5.4.2 FLAG FIELD - <Byte 1>
This field contains four file flags in bits 7-4. The loworder nibble is associated with
the DATE field. The flags are encoded as fol | ows:

Bit 7 When this bit is set, the systemw |l be kept from deallocating any unused
space at the end of the file when the file is closed. This bit wll be set
toa"1" if the file was "CREATEd" by the D35 |ibrary command, CREATE Such
a file will never shrink in size. The file will remain as large as its
| argest all ocati on.

Bit 6 This flag is termed the "MD flag". If this flag is set to a "1", it
indicates that the file has not been backed up since its last nodification.
The BACKUP utility is the only DO5 facility that will reset this flag. It is
set during the file close operation if the File Control Bl ock (FCB+0, Bit 2)
indicated a nodification of file data.

Bit 5 This bit is set by the systemwhen a file is opened with UPDATE or greater
access. It is used to detect the presence of an open file for subsequent
CPENs of the sane file. The bit is reset by the CLCSE operati on.

Bit 4 This bit is used internally by the system

If the ATTRBUTE field identifies the record as an FXDE, then this entire byte (flags and
month) will contain the Drectory Entry Code of the directory entry forward linked to
this one. This entry is the backward I|i nk.

5.4.3 MXD Fl CATI ON DATE - <Bytes 1 - 2>

This field is conposed of 12 bits, the loworder nibble of DR+l and the entire byte of
D R+2. It contains the nonth, day, and year for the day that the file was | ast nodified.
The field is encoded as foll ows.

Bits 11-8 Contain the binary nonth of the last nodification date. If this field
is a zero, the systemdate was not set when the file was established
nor since if it was updated.

Bits 7-3 Contain the binary day of |ast nodification.

Bits 2-0 Contain the binary YEAR - 1980. That is to say that 1980 woul d be
coded as 000, 1981 as 001, 1982 as 010, etc.

5.4.4 ECF OFFSET - <Byte 3>

This field contains the end-of-file offset byte. It points to the position in the ending
sector of where the next byte can be placed. If ECF O-FFSET is a zero, it means that a
full sector of 256 bytes had been witten to the last sector of the file and the next
byte must be witten to a new sector. This byte, and the ending record nunber (ERN, form
atriad pointer to the byte position imrediately followi ng the last byte witten.

5-11

5.4.5 LOd CAL RECORD LENGTH - <Byte 4>

This field contains the Logical Record Length (LR.) specified when the file was initially
generated (via @NT) or subsequently changed by being overwitten with sone file that
has another LR. via "OOPY (CLONE)" or "BACKUP'. A value of "0" indicates that the LR is
equal to 256.

5.4.6 FILE NAME - <Bytes 5 - 12>

This field contains the nane portion of the file specification. The file name wll be
left justified and padded with trailing blanks. The name wll always be in upper case
characters <A-Z, 0-9> |If a file has FXDE records in addition to the FPDE only the FPDE
wll contain the filenane in this field.

5.4.7 FILE EXTENSI ON - <Bytes 13 - 15>

This field contains the extension portion of the file specification. As in the name
field, it is left justified and padded with trailing blanks. If a file has FXDE records
in addition to the FPDE, only the FPDE will contain the file extension in this field.

5.4.8 OMER PASSWORD - <Bytes 16 - 17>

This field contains the hash code of the OMER password. The OMER password is used to
gain full access to a password protected file. Passwords are assigned at file creation
and/ or changed with the ATTR B library command. The 16-bit hash code for a file password
can be obtai ned using the nethod shown for obtaining the di sk master password hash code.

5.4.9 USER PASSWORD - <Bytes 18 - 19>

This field contains the hash code of the USER password. THE USER password is required to
access the file at the level of protection identified in the attribute field. Passwords
are assigned at file creation and/or changed with the ATTRIB library comrand. The 16-bit
hash code for a file password can be obtai ned using the nethod shown for obtaining the
di sk master password hash code.

5.4.10 END NG RECCRD NUMBER - <Bytes 20 - 21>

This field contains the ending record nunber (ER\) which is based on full sectors. If the
ERN is zero, it indicates a file where no witing has taken place (or a lot of witing
whereby you forgot to close the file). If the LRL is not 256, the ERN val ue represents
the sector where the ECF occurs. Each tine a sector is witten to the disk, the ERN is
advanced by one - even if the sector is not a full sector. Thus, if ERN shows 3, and ECF
OFFSET shows 0, then three full sectors have been witten (relative 0, 1, and 2). If ERN
shows 3 and ECF CFFSET shows 62, then two full sectors and one partial sector of 62 bytes
have been witten.

5.4.11 EXTENT DATA FI ELDS - <Bytes 22 - 29>

The extent data fields contain data on the allocation of disk space for the file. Each
field is composed of 16-bits and can contain the allocation infornation for a nmaxi mum of
32 contiguous granules. Their contents tell you what cylinder stores the first granule of
the extent, what is the relative nunber of that granul e, and how nany contiguous granul es
are in use in the extent. Each extent is encoded according to the pattern illustrated for
extent field 1.

5.4.11.1 Extent Field 1 - <Bytes 22-23>

Bits 15-8 Gontain the cylinder nunber for the starting granule of that extent. The
extent uses space on the disk starting fromthis cylinder and the sector
based on the starting granule, for as many granules as are noted in bits 4-
0.

Bits 7-5 (Contain the relative granule nunber (0-7) in the cylinder which is the first
granule of the file for that extent. This value is nunbered starting from
zero. (i.e. a "0" indicates that the first granule in use is the first
granule on the cylinder. This would be sector 0. A "1" would indicate that

5-12

the first granule in use is the second granule on the cylinder. If there are
6 sectors per granule, sector 6 would start the extent. A "2" would indicate
that the first granule in use is the third on the cylinder. If there are 6
sectors per granule, then the first sector in use would be sector 12.)

Bits 4-0 Contain the quantity of contiguous granules in the extent. The value is
relative to 0. Therefore a "0" value inplies one granule, "1" inplies two,
and so forth. Since the field is 5 bits, it contains a maxi rumof X 1F or
31, which would represent 32 contiguous granul es.

5.4.11.2 Extent Field 2 - <Bytes 24-25>
Structured the sane as 1.

5.4.11.3 Extent Field 3 - <Bytes 26-27>
Structured the sane as 1.

5.4.11.4 Extent Field 4 - <Bytes 28-29>
Structured the sane as 1.

5.4.12 FXDE LI NK FLAG - <Byte 30>

This fieldis a flag noting whether or not a link exists to an extended directory record.
If no further directory records are linked, the byte will contain X FF . If the value is
XFE, alink is recorded to an extended directory entry.

5.4.13 FXDE LINK PO NTER - <Byte 31>

This is the forward link to the extended directory noted by the FXDE LINK FLAG The |ink
pointer is the Drectory Entry Code (DEC) of the extended directory record. The FXDE will
then contain the Directory Entry Code of this directory entry in the FLAGfield and the
nonth sub-field of the DATE field. This other DEC becones the backward Iink.

Figure 5-8 represents one directory entry record illustrating a file with two extents.

R BUTES [active directory entry record]
LAGS [Modi fied and not backed up]
- DATE of last nodification [July 15, 1983]

- BECF OFFSET [position to PUT next byte = 189]

N

I

| |- LRL [256]

| |- Name [H TINFQ

|] | | - Extension [SCR
| ..
| 10 47 7B BD 00 48 49 54 49 4E 46 4F 20 53 43 52
| 96 42 96 42 25 00 1D 46 23 40 FF FF FF

| | | | - FXDE link [no FXDE]
| | | - Extent 4 [unused]

| | - Extent 3 [unused]

| |- Extent 2 [starts cyl 35, gran 2, 1 gran]
| |- Extent 1 [starts cyl 29, gran 2, 7 grans]

| |- ERN[37 sectors witten]

| - User PASSWRD [bl anks]

e

T gl
T
T
T
n
T

Figure 5-8: Illustration of a directory record entry

5-13

6. Disk File Access and Control
6.1 GENERAL FI LE STRUCTURES

The primary reason we nake use of computer systens is to aid us in managi ng | arge vol unes
of data. Qur conputers utilize the D sk (perating System (DO5), the fundanental purpose
of which is to make an easier job of handling the storage of that data. V¢ usually want
rapid access to data; therefore, the random access disk storage device is the selected
storage nmediumdue to its inherent speed in accessing data. These devices take two forns,
floppy disks with either one or two heads which use a single diskette wth correspondi ng
one or two surfaces, and w nchester hard disk drives which consist of one or nore
platters with each platter consisting of two surfaces. The hard di sk drive may use either
a fixed or renovabl e nedi a.

Regardl ess of the disk drive type, each surface is divided into concentric circles of
storage area called tracks. Each track is then subdivided by a fixed nunber of subareas
call ed sectors. Athough the nunber of sectors per track may vary fromone nedia type to
another, the nunber of sectors in each track of the sane nedia is constant. The DCB
assigns nunbers to every sector, every track, and every surface. Surfaces are nunbered
consecutively by one starting from zero. Tracks are nunbered consecutively by one
starting fromzero at the outernost portion of the disk giving the innernost track the
hi ghest nunber. A CYLINDER consists of the |like nunbered tracks on all surfaces. For
exanpl e, on a two-surface nedia, track zero of surface zero and track zero of surface one
are grouped together into cylinder zero. The sectors in each track are nunbered starting
from zero. Thus, each track contains |ike nunbered sectors - regardl ess of track nunber
or surface. Therefore, each sector on a disk is designated unique by its respective
sector, surface, and track nunbers.

Data is stored in these sectors. Coviously, if your programhad to keep track of all the
sectors your data was occupying, you would have to make the program necessarily conpl ex
[if this is not obvious, you will becone a believer after reading the section on file
access]. The DCb alleviates you of this task by totally managi ng the storage space. It
does this by associating an 8-character nane with the storage areas assigned to a
logically connected set of data called a file. Thus, the name becones a FI LENAME. The DCB
also permts a 3-character extension to be affixed to that nane to better classify the
type of file: data, text, command program etc. This extension is terned the FlILE
EXTENSI N You can attach a uni que PASSWIRD and access | evel such as EXEQute only or READ
only to each file in order to provide a greater degree of protection to the information
contained in the file. Furthernore, the file can be placed on any of up to eight disk
storage devices. Each disk drive is assigned a DRIVE nunber from zero to seven.
Therefore, to uniquely reference a file, we put together the NAME, EXTENSI ON PASSWERD,
and DRIVE and refer to the result as a FILE SPEAFICATION The term file specification,
is rather long so we shorten it to "fil espec”.

In order to assign space on a disk for storage of file data, the DC5 groups together a
quantity of sectors into a GRANMLE The size of the granule varies according to the
capacity of the media. This variation in size was discussed in the GRANULE ALLQOCATI ON
TABLE section. The DCO5 assigns space dynamcally to a file. This neans that space is
reserved for the file only when the file needs it. The process whereby the system | ooks
for additional space is terned the ALLOCATI ON process. The DOS would prefer to allocate
granules that are connected sequentially to each other. The sequential connections are
only logical in nature, not physical connections. The DC5 prefers to access a disk drive
device in a particular order to optimze the transfer of data. S nce the tine to step the
head from one cylinder to another is greater than the tinme to access a sector in the
cylinder where the head is positioned, it is far preferable to access all sectors of a
cylinder before stepping to another cylinder. If we ook at sequential access of a file,
we then would want to conceptualize a sequential connection to start from track zero,
surface zero, sector zero incrementing the nunbers like the odoneter in a car as it

6-1

travels the turnpike. In this nanner, all sectors of a cylinder are accessed before the
disk drive has to step to the next cylinder.

It is not always possible to allocate space consecutively. For instance, say we want to
add a granule to an existing file but the next granul e consecutive to the |ast granul e of
the file has already been allocated to another file. Qur file must then be fractured into
nore than one piece. VW termeach piece of the file an EXTENT. The systems file access
routines logically connect each EXTENT so to a program accessing the file, it appears as
if the file exists as one continuous allocation of space.

The disk directory stores all the allocation data on each file contained on the disk.
Alocation data on a particular file is stored in a directory entry record. Each record
can hold the allocation information on up to four extents. The first record is termed the
File's Prinmary Directory Entry or FPDE while all succeeding directory records are
considered to be the File's Extended Directory Entries or FXDE records. In order to
access the file data, the systems file access routines nust utilize the infornation
contained in the file's FPDE

It is inpractical to have to read the FPDE each time another sector of data is
transferred. Therefore, the scheme enployed is to access the directory once in a process
to obtain all of the file's access infornmation and place the information into a nenory
area termed a File Control Block (FCB). The actual process is terned "opening the file".
The reverse process, that of updating the directory entry once the access of a file is
conplete is terned "closing the file". The DO5 provides SuperVisor Call requests to
performthe CPEN and CGLCSE functions. These type of requests are called "file control”
functions since they give you the means of controlling the disk file. Qher types of
requests are associated with accessing the data in a file and are thus called "file
access" requests. | NTERFAQ NG VI A SUPERVI SCR CALLS, chapter 7, describes each access and
control SuperVisor Call.

Data is generally collected into units called RECCRDS. These may be fixed-1ength records
with each record being exactly the sane length or they may be variable length records
where the length of the record varies fromrecord to record. Fixed-length records can be
accessed sequentially (i.e. starting fromrecord zero and continuing to the last record
of the file). This type of access is termed RECCRD I/Q The D05 supports fixed |ength
records fromone to 255 characters in length by automatically handling the blocking and
debl ocking of records into and out of the disk file 1/O buffer. S nce the D5
standardi zes disk file I/O buffer sizes at 256 characters each, record | engths of 256 are
handl ed directly without recourse to the bl ocking and debl ocki ng used on shorter records
and these records can al so be transferred to and fromthe di sk nore quickly. Record sizes
larger than 256 can be used in an application program however, the blocking and
debl ocking of records must be perforned entirely within the application while, in
general, the application wll use 256-character records to and from the system
Henceforth, any reference to the termRECCRD will consider to be associated with a record
which ranges from1l to 256 characters in | ength.

Fi xed I ength records can al so be accessed directly by record nunber (which is customarily
call ed RANDCM ACCESS). The DC5 provides SuperVisor Call requests to position the record
pointer maintained in the File Control Bl ock to the record of choice. The application can
then address the record via READ or WRITE SuperVisor Call access requests. Additional
SVGs provi de other functions associated with the access of a file.

The structure of variable length records is highly dependent on the programmng | anguage
used to code the program Mst high-level |anguages (BASIC FCRTRAN etc) provide
variable length file structures which may not be equival ent across each |anguage. (ne
common structure which is supported by nore than one language is to use a character or
character conbination to represent the end of the record. The BASI C | anguage operating
under Version 6 uses the ASO|l code X 0D which is a CARR ACE RETURN to indicate the end

6-2

of a variable length record. Sone systens use CARRIACE RETURN followed by LINE FEED
(X OA'). Sone |anguages use a one-byte or two-byte length indicator within the record to
indicate the actual length of the record. Programfiles that are directly executabl e are,
in fact, variable length record files which use a one-byte length field wthin each
record. These "load nodul e* files even include a record TYPE character which permts the
specification of different records for different purposes within the sane file.

Sone files may not even be able to be conceptualized as containing fixed or variable
length records. You mght consider a word processing text file as not falling into the
above classification although each paragraph may, in fact, be a "record'. Qher files nay
be variable length but include an index which points to the begi nning of each record or
group of records. The records are accessed sequentially after the record pointer is
extracted fromthe index. This type of access is usually called I ndexed Sequential Access
Method (1 SANM). Both the operating systems library files and the Partitioned Data Set
files supported under the PROPaDS utility are ISAMfiles. The bottomline is for you to
determne the type of access you want to enploy after exploring the nature of your data
and under st andi ng how t he system accesses disk files.

There are three methods which are used in application prograns to access disk files. The
first method is to consider the file as a streamof characters. This access nethod uses
the CGET and PUT character 1/0O SuperVisor Call functions and was discussed in chapter 3,
DEVI CE | NPUT/ QUTPUT | NTERFAQ NG The second nethod is where your file contains physically
consistent fixed length records. In this case, it is probably practical to consider
RECCRD 1/Q The third nethod is to use 256-byte records and perform your own bl ocking or
debl ocki ng as required.

The follow ng sections describe the methods used to control and access files. The |ast
section conpletely describes the fields in the File Control Bl ock which is used in all
interfacing of disk files.

6.2 CONTRCOLLI NG DI SK FI LES

Wen a file is to be opened for access, the application programinitially provides the
file specification to the DG5S by placing it inthe File Control Bl ock (FCB) which will be
used for the file. The programthen invokes the CPEN function. The D35, in turn, searches
the disk drive(s) for the file's directory entry. Ohce found, it replaces the filespec in
the FCB with infornati on needed by the file access routines. The systemthen manages the
FCB contents according to the denands of the file access requests. The fol | owi ng sections
wll illustrate some of these control functions.

6.2.1 Getting Fil especs

From where does a program obtain the filespec? You are already famliar with the D05
commands that appear to get the filespec fromthe command line. Let's take a look at this
nmethod. You will learn from the chapter on SuperVisor Calls that when the system
transfers control to a program register pair H. contains a pointer to the first non-
bl ank character on the command |ine which termnated the name of the executing program
Let us assune that our programwi ||l use a command |ine syntax as foll ows:

PROGRAM NAME FI LE- SPECI FI CATI ON (PARAVETERS)
The command-line pointer wll be pointing to the first character of the file

specification. For the nonent, let's nake the fil espec entry mandatory. V& can then code
the routine to fetch the filespec as foll ows:

ENTRY LD DE, FCB1 :Point to FCB
LD A, @SPEC ;ldentify the SVC
RST 40 ;I nvoke the SVC

JP Nz, SPCERR : Transfer on error

6-3

The @SPEC SMC will transfer the fil espec contained on the command line into the FCB. Any
conversion to upper case will be perforned as required which permts the entry of the
filespec in upper or lower case. Typically, you would want to provide a default file
extension to save the user the tine it takes to enter up to four additional characters
when the application is designed for a class of file (such as TXT, ASM JCL extensions).
A default file extension will not override any extension entered with the filespec. A
default will add an extension provided by the programonly if the user omtted one. This
default can be added as foll ows:

PUSH H. ;Don't disturb command |ine pointer
LD H., TXTEXT ;Point to storage of default
LD DE, FCB1 ;Point to FCB as required
LD A, @EXT ;ldentify the SVC
RST 40 ;1 nvoke the SVC
PCP H ; Restore the pointer
TXTEXT DB 'TXT :Data field for default extent

CGher times we nay want to pronpt the user to enter a filespec. This is achieved through
a conbi nati on of @GSPLY and @EYIN as fol | owns:

LD H., SPOVBGH ; Point to nessage

LD A, @SPLY ;ldentify the SVC

RST 40 ;I nvoke the SVC

LD H., FCB1 ;Use the FOB for input buffer
LD BC 31<8.CR 0 ; Specify 31 chars & C=0

LD A @EYI N ; SMC for line input

RST 40 ;I nvoke the SVC

JP C, QOTBRK : Transf er on <BREAK>

LD DH ; Copy the FCB pointer to DE
LD E L

LD A, @SPEC ; Now parse the entry to

RST 40 : handle I/c to UC

JP Nz, SPCERR

SPOVBGS DB "Enter the input filespec', 13

This routine will display the "Enter the input filespec" nessage and pl ace the user input
into the FCB. The @SPEC request will then process the user entry to convert any |ower
case to upper case while it tests the validity of the entry.

6.2.2 Password Protection of Files

Any di scussi on concerning the opening of disk files nmust begin with a discussion of file
password protection. This is a subject that has not been too well understood and deserves
sufficient explanation. File protection is a process whereby access to a file can be
l[imted to either a level of access (read, wite, remove, etc,), to the entry of a
password, or to both a level of access and a password requirement. The DC5 achi eves this
file protection capability through a conbination of two password fields and a protection
level field for each file. The file password fields are terned the OMER password and the
USER password. Wsers famliar with earlier versions of the DC5 nmay be famliar with the
earlier corresponding terns of UPDATE and ACCESS whi ch were changed in rel ease 6 to ONER
and USER respectively to avoid any confusion with the protection |evel.

The protection level field (we wll use the term PROI is associated with the USER
password and i ndi cates what |evel of access to the file is granted when the USER password
is part of the file specification at the time that the file is opened. The different
| evel s of access granted are shown in figure 6-1. Suppose that the access |level is READ
If the filespec includes the USER password, then the file will be opened but the system

6-4

wll only permt the opener to read the file, not to wite to it. Any SuperVisor Call
request for updating, witing, renamng, or renmoving will return the "Attenpt to access
protected file" error. If the OMER password is part of the filespec when the file is
opened, the systemw |l permt all levels of access regardl ess of any USER password or
protection |evel.

Pr ot Ef f ect

NONE You cannot access the file. This PROI is used for systemfiles.
EXEC You can only run the programfile.

READ You can read the file.

UPDATE You can wite to an existing file without extending it.

WR TE You can wite to and extend the file.

RENAME You can change the nane/extension of the file.

REMOVE You can delete the file fromthe disk.

FULL You can change the protection |level and passwords of the file.
Not e: Each level grants the access listed above it.

Figure 6-1 Access protection |evels

Passwords are assigned to files in one of two ways. If a password is part of the filespec
when the file is first created with the @NT SuperVisor Call function, then that
password wi |l becone both the OMER and USER passwords. The protection level will be FUL
but since both password fields are in use, the password nust be entered for any access to
the file. The second nethod of applying password protection is to use the ATTRIB library
command. This command al l ows you to change both passwords and protection | evel - assum ng
you have the access authority based on the file's existing protection.

A password can be conposed of nothing but blanks. This is in effect, no password at all
since the entry of NOTHNG is interpreted as a blank field and thus will grant access
according to the level associated with the password field. For instance, if the OMER
password field is blank, the file has no protection whatsoever even if the USER password
field is non-blank because a filespec w thout a password entry will match the bl ank OMER
password thus granting full access. It is inportant for the OMER password to be non-
blank if the file is to be protected i n any manner.

A common situation is to find the OMER password kept private to those individual (s)
either maintaining the application or responsible for the integrity of the file contents
whil e providing a bl ank USER password with a protection level set to the mninumlevel of
access needed by the user. For instance, if the user only needs to read a file, set the
protection level to READ. This user can then read the file without having to bother wth
a password but that user cannot wite to the file, cannot remove it fromthe di sk, cannot
renane the file, nor can the user change the protection level of the file. However, the
mai ntai ner can step in to deal with file maintenance at a higher |evel of access given
t he OMER passwor d.

Were use of a file needs to be restricted to an individual out of a group of
individuals, then the USER password field should have a non-blank password that is
distinct from the OMER password. The access protection level is still kept to the
m ni nrum necessary for the user. This scenario will then permt that individual the
m ni nrum access to the file while excluding all others (unless, of course, the user shares
hi s know edge of the password with others).

It may be practical for any given installation to consider protecting all files to the
m ni nrum access |evel expected of them Thus any file whose primary access is READ only
would be protected accordingly. There will be less chance to inadvertently renove the
file by mstake or mstakenly wite to it - a common error when dealing with applications
that frequently pronpt the user for the entry of file specifications.

6-5

A high level [anguage permts you the opportunity of indicating your access level in the
| anguage syntax. For exanple, BASIC requires you to specify whether a sequentially
accessed file is to be INPUT or QUJIPUT corresponding to READ or WR TE. The operating
system has no facility for identifying the nmaxinum level of access desired for any
particul ar opening of the file except through the passwords and access protection |evel.

6.2.3 Qpening Files

Fil es opened with UPDATE or greater access are indicated as open in their directory entry
record by the setting of a "file open bit". Any subsequent open attenpt will result in a
force to READ access protection and return the appropriate "File already open" error
code. This is designed primarily for the use of shared access nultipl exed disk drives
where files are shared among a nunber of wusers. This arrangement wll restrict the
altering (but not reading) of file data to only one user at a time. It is therefore
inportant for applications to CLCEE files as soon as the application is finished with the
file access. It is also inportant for applications to trap the "File already open" error
and take appropriate action. Realize that files protected to READ only, nay be opened by
multiple users and still be opened for updating by the maintainer providing the proper
OMER password is provided. The inportance of mintaining proper levels of file
protection through the use of passwords and protected access |evels should not be taken

lightly.

For the convenience of applications that access files only for reading, a facility for
forcing the file access to READ only when a file is opened has been provided in the DCB5
This facility will inhibit the "file open bit" and set the File Control Bl ock access
permssion to READ (providing that the access permission |level granted according to the
password entered was READ or greater). Under this linkage, it is not necessary to close
the file when you are finished accessing it as no directory updating will be done. C
course if you want the systemto recover the filespec and place it into the FCB, you will
have to close the file. Check the discussion covering the FORCE-to-READ flag (bit-0 of
the SFLAGH) in the @LAGS SuperVisor Call. Note that once the FORCE-to- READ flag has been
set, the next @PEN or @NT SuperVisor Call request will automatically reset the bit
after satisfying the request.

Wen a file is opened, the system needs to be told where the disk file 1/O buffer is
located. This buffer is used to transfer a full sector of data to and fromthe disk. The
system al so needs to be told what Logical Record Length (LR.) is to be used while the
file is open. If the LRL at open time differs fromthe LRL of the file as noted in the
directory, the CPEN routine will return an "LR. open fault™ error code BUl THE FI LE WLL
STILL BE PRCPERLY CPENED ACCCRDI NG TO THE LRL PASSED IN THE CPEN REQUEST. The error code
is your indication that a different LRL is being used. If the LR. is 256, then the system
does not block and debl ock the data records and will expect that all data to I/Owll be
using the disk file I/O buffer. If the LRL is in the range <1-255> then the disk file
[/O buffer is used only for transferring full sectors to and from the disk. Say, for
exanple, a file has 200-byte records, the second record of the file is partially
contained in the first sector and partially contained in the second sector. The file is
said to SPAN two sectors. This requires a separate buffer to hold the record data while
the systemuses the disk file I/Obuffer for the transfer of the sector. The programthen
w il specify a USER RECCRD buffer (UREQ that will be used by the systemto transfer the
data records to and fromthe disk file I/O buffer on each I/O request. Thus, whenever a
file record spans two sectors, the systemw |l have the necessary buffering regions to
fully block and debl ock the record. Note that the arrangement of separate disk file 1/0
buffers for each file provides greater flexibility for accessing miltiple files
coi nci dental | y.

To illustrate the linkage necessary to open an existing file, we will be referencing an
80-byte record length file with the specification, BUKLQAD DAT: 2. The file has an OMER
password, blank USER password with protection level of WRTE The filespec has been
placed into the File Control Block as shown in figure 6-2. Note that the filespec is left
justified and is termnated with an ETX (X 03') character. The ETX is automatically

6-6

pl aced as the terminator when a file specification is parsed into the FCB by the @SPEC
SuperVisor Call function. A carriage RETURN (X 0D) could equal |y be used if your program
is conpletely controlling the placement of the filespec into the FCB. The remai nder of

the FCB contents is inconsequential as anything past the ETX or RETURN is conpletely
i gnored by the CPEN process.

Figure 6-2 FCB prior to CPEN

Ohce the FCB is filled with the filespec, we can open the file using |inkage such as
this:

LD H,FILEBUF ;Point to the disk file I/O buffer

LD DE, FCB1 :Point to the File Control Bl ock
LD B, 80 ; Specify the Logical Record Length
LD A, @PEN ;ldentify the SVC
RST 40 ;I nvoke the SVC
JP NZ, | CERR :Transfer on a returned error
CRG $<-8+1<8 ;Set PC to page origin

FI LEBUF DS 256 ; Reserve space for file buffer

Many prograns are coded so that the data areas are placed at the end of the program As
you becorre adept at file handling, you will discover that accessing file buffers that are
pl aced at a page boundary is not only easier, but sonetinmes nore efficient depending on
your specific use of the buffer. The "CRG pseudo-CP in the above routine serves the
purpose of establishing the program counter at a page origin. This provides for the
access of each byte in the buffer by indexing the |oworder byte of a 16-bit register
pair.

If you are going to create a new file, all that needs to be changed in the routine
illustrated is to replace the "LD A @PEN" with "LD A @NT". Specifics on the protocol
of @NT are located in chapter 7. The @N T SuperVisor Call can also be used to open an
existing file. Your use of either @PEN or @NT is dependent on the purpose of the file.
If your application is going to wite a file that can be either existing or new then
@NT is the choice. @NT will informyou as to whether it |located an existing file or
created a new one (the carry flag is set if a newfile is created). This infornati on nay
be useful to your application. If it is a requirenent that the file be existing, then
@PEN shoul d be used.

If it is nmandatory that the file NOI be existing, then the system provides a few
capabilities to support this requirenment. You can first @PEN the file. If the file is
successfully opened, then you know that the file is existing and can take the appropriate
action. If the file did not open successfully, you should check the error code returned
by the systemto verify that it returned a "File not found" error as other errors may not
inply the non-existence of the file [for instance, the LRL provided with @PEN nay be
different than that stored in the directory entry giving an "LR. open fault" error].
Another interesting technique for detecting the existence of a file is to attenpt to
RENAME it using the sane name. This can be done with the @ENAME SuperVisor Call by
copying the filespec into a second FCB for use as the "new' but identical name. The
@ENAME routine will always first check the existence of the file before determning
RENAME permssion and verifying that the new name differs from the old. If @GENAME
returns a "File not found" error, you will knowthat the file does not exist. If the file

6-7

does exist, @ENAME should return either an "Illegal access to protected file" error (if
you do not have RENAME permssion) or an "lllegal file name" error due to the duplicate
nane. The @ENAME nethod uses slightly | ess systemoverhead and thus will execute faster.
It also will not attenpt to set the directory's "file open bit" thereby performng one
less directory wite.

6.2.4 dosing Files

The reverse operation of opening a file, be it @NT or @PEN is the CLCSE operati on.
Renenber that files opened with UPDATE or greater access must be closed in order to
update the directory entry record. The updati ng process w |l change the nodification date
and set the MDification flag bit if any witing has occurred. The updating process al so
alters the end-of-file infornmation if a sequentially accessed file has been either
extended or shortened. Finally, the updating process resets the "file open bit". The
CLCBE operation uses the information that the system has been maintaining in the FCB.
Thus, you close a file sinply by passing the FCB pointer to the SuperVisor Call as
fol | ows:

LD DE, FCB1 ;Point to the open File Control Bl ock
LD A, @LCSE ;ldentify the SVC

RST 40 ;I nvoke the SVC

JP NZ, | CERR :Transfer on a returned error

6.2.5 Mscellaneous File Control

Before we leave the topic of file control let's address sone |esser used control
requests. First we have the renoval of a file. The systemls REMOVE library command can
delete a file fromthe disk when at D05 Ready or command | evel. You could also renove a
file by passing a "REMOVE fil espec” comrand line to the systemvia the @WDR SuperVi sor
Call request. If we consider the DC5 command |level to be the highest level, then the
lowest level is via assenbly |anguage SVGs. The SVC nethod of file renoval requires that
the file first be opened. The reason for this requirenment is based on the overlay
structure of the system The file control routines are resident in systemoverlays rather
than in the nmenory resident portion of the systemlike the file access routines. It so
happens that the routines to open a file are in an overlay (SYS2) different from the
overlay containing the routines to remove a file (SYS10). Since the system has no
provision for system overlays to invoke functions in other overlays, your application
program "supervises" the two functions of opening and renoval. This linkage is as
fol | owns:

LD DE, FCB1 ;Point to the FCB hol ding the fil espec
LD A, @PEN ;ldentify the SVC
RST 40 ;1 nvoke the SVC
JR Z, CPENCK ;Continue if no open error
cP 42 ; Check on "LRL open fault"
JR NZ, RWERR ;Error if anything el se
CPENX LD A GEMDV ;ldentify the SVC
RST 40 ;I nvoke the SVC
RWERR JP Nz, | CERR :Transfer on a returned error

Notice that we did not need to reference a disk file I/Obuffer since no I/Owas going to
be performed (why waste the three bytes for the instruction?). A so, since we are goi ng
to ignore "LRL open fault" errors, there is no need to put an LR. value into register B

Wen the systemrenoves a file, it first deallocates the space taken up by the file by
resetting the appropriate bits in the Ganule Alocation Table. In the deallocation
process, all of the file's extended directory entry (FXDE) records are zeroed and their
corresponding Directory Entry Code (DEC) positions freed for future use. Then the hash
code is renoved fromthe file's primary directory entry (FPDE) record DEC position of the
Hash Index Table used by the file. Finally, the ACTIVE bit of the FPDE record is reset.
The rest of the information in the FPDE is left unaltered. It is thus possible to
"unrenove"” a file that had a maxi nrum of four extents by activating its FPDE restoring

6-8

the hash code in the proper DEC and reall ocating the space in the GAT provided the space
has not been reused by sone other file.

Two other |esser used SuperVisor Call requests are @QOAD and @RI It's nore inportant to
explain their use rather than illustrate their use. Mst prograns are stand-alone
prograns. They are totally self contained in terns of the programcode. Wen prograns get
[arge or when prograns nust access |large amounts of data in nmenory, it may be necessary
to segnent the program into two or nore sub-programs. Depending on the functions
perforned by the program this segnentation can take two forns. Wiere the functions can
be divided into separately chained processes (such as a |anguage conpiler that can
separate parsing from code generation), one sub-process can RN the other sub-process.
Were the functions of the program nmust be divided up and controlled by a supervising
sub-program the available nenory can be divided into a resident sub-program region and
an overlay sub-programregion - simlar to the overlay structure of the operating system
Thus the supervisor will LQAD each overlay as required and transfer control into the
| oaded sub- program

Wien an executing program needs to either @UN or @QAD another program there is one
point that is nost inportant to understand. A though the @UN and @QAD functions utilize
the systemfile buffer, they require a user File Control Block. A so, either request will
return to the calling programif an error is detected in the loading of the programfile.
Therefore, it is essential that the program being |oaded nust not overwite either the
FCB used to access it nor the error handling routines follow ng the @QAD or @UN | inkage
requests! To ignore this situation is to invite disaster to come knocking at your door.

6. 3 ACCESSI NG DI SK FI LES

The concept of accessing disk files conveys the idea of transferring data to and fromthe
disk file. Before the file can be accessed, it nust be opened as discussed in the
precedi ng section. Once a file has been opened, any of a nunber of file access Super\ sor
Call requests can be nade dependi ng on the specific nature of the desired function.

It may be useful to understand exactly how the operating systems file access routines
react in order to satisfy our request. Let us say, for exanple, that we want to read the
100th record of the BULKLQAD DAT file. The 100th record has a record nunber of 99 since
records are nunbered starting fromrecord 0. VW establish the linkage to acconplish this
as foll ows:

LD DE, FCB1 ;Point to the opened FCB

LD BC, 99 ; Specify the record nunber

LD A, @OBN ;ldentify the positioning SVC
RST 40 ;I nvoke the SVC function

JP Nz, | CERR :Transfer on error

LD H., URECL :Point to our record buffer
LD A, @EAD ;ldentify the SVC request

RST 40 ;I nvoke the SVC

JP Nz, | CERR :Transfer on an error return

The first part of the |linkage positions the FCB so that the next 1/O operation wll deal
with record nunber 99 - the 100th record. After a successful positioning, the record wll
be read into the record buffer. This is a very brief explanation. Let's exanine in
detail, the sequence of steps actually executed by the file positioning routine, @GSN

First, since the file's LRL is less than 256, the 100th record nust be debl ocked fromthe
sector containing the record (or sectors if by chance the 100th record spans two
sectors). By multiplying the record nunber (99) by the logical record length (80), the
value 7920 is obtained. This represents the first byte of the record in CFFSET position
240 of relative sector nunber 30.

6-9

Next, it would be very useful if the disk file 1/O buffer already contained relative
sector nunber 30. The Next Record Nunber (NRN) is the relative sector nunber. However,
before we can make use of the NRN we have to nake sure that the buffer currently
contains the sector identified by the NRN To determine this, @QCBN first checks the
"buffer current” flag. If the buffer contains the sector identified by the NRN @CBN
then checks if the NRN and the sector nunber needed to satisfy the position of record 99
are in agreenent. If the file buffer currently holds the needed sector, it imrediately
transfers to a routine which checks on end-of-file conditions and returns to the caller.

If the buffer does not contain the needed sector, then the NRN nust be changed to the
relative sector needed. But first the system nust check to see if it has to wite the
buffer contents back to the disk file. This determnation is based on whether the buffer
is current and contai ns changed data which has not yet been witten to disk (perhaps the
result of a previous record witten that did not span two disk sectors and thus did not
require any physical witing).

Wen the @EAD request is passed to the system again the systemnust first check if the
disk file I1/O buffer contains any data which is updated but not yet witten to disk. The
@EAD routine does not know that an @SN request imrediately preceded it. Then, since
the LRL is less than 256, the @¥AD routine passes a series of character read requests
for as many characters as that identified by the LR.. Each character is placed into a
consecutive location of the user record buffer, which in this case is URECL The
character read requests are virtually identical to those requested by an @X¥ET SuperVi sor
Call request as both are performed by the same routines. Finally, the systemadjusts the
Next Record MNunber and CFFSET pointers so that the next @EAD references the next
consecuti ve record.

V¢ now have to | ook at what happens when a character read is requested. First, the system
checks to see if the end of the file has been reached so it can return the "End of file
encountered" error code. Next, it checks to see if the byte is contained in the current
disk file buffer (i.e. if the buffer is current). If the buffer is not current, the
sector identified by the NRN nust be read from disk. Before the system even wants to
cal cul ate what sector that represents, it has to ensure that the requesting user has READ
permssion to the file. This it can do by examni ng the access level stored in the FCB.

Wien it concludes that proper access is available, it proceeds to calculate the |ogical

cylinder and sector that the file's NRN relative sector represents. If you thought the
process was conplex up to this point, hang on to your hat! The relative sector (remenber

nunber 30?) is converted to a relative granul e nunber and relative sector offset in that

granule. In this case, we will assurme that the file is stored on a 5-1/4" floppy disk ette
formatted in double density with six sectors per granule. The system obtains the sectors
per granule data fromthe Drive Control Table (DCT) for the drive containing the file.
This means that the relative granul e needed is granule nunber 5 (30 divided by 6). S nce
the remai nder of the calculation is zero, the relative sector offset in that granule is
nunber O which is the first sector of the granule.

The system then exam nes the EXTENT fields of the FCB to determne what extent contains
data covering relative granule nunber 5 To do this, the system uses the cumlative
granule figures contained in the EXTENT fields. After determining that the granule is in
one of the existing extents, the system can cal culate the needed cylinder and relative
sector in that cylinder by the following process. A few nunbers nay help this
expl anation. Say the file has two extents. The first extent contains three granul es
(nunbered 0-2), while the second extent contains twelve granules (nunbered 3-14) and
starts on the third granule of cylinder 25. Figure 6-3 illustrates part of the second
extent by cylinder and granule. First subtract off the nunber of granules contained in
all extents previous to the desired extent and add the result to the starting granule
nunber of the extent (5-3+2=4). Next, divide that result by the nunber of granules per
cylinder derived from DCT infornmation and keep the remainder (4/3=1 renainder 1). The

6-10

result is the relative cylinder fromthe starting cylinder while the remainder is the
relative granule offset in that cylinder. If we now add the relative cylinder (1) to the
starting cylinder (25), we conpute the desired granule is in cylinder 26. Furthernore,
the relative granule offset is granule nunber 1 (the second granule). Thus, by using the
starting cylinder and granule of the extent, the relative cylinder and sector nunbers for
the starting sector of the needed granule are obtained. Finally, the granule offset is
used to get the sector nunber of the desired sector. Since the granule offset is zero,
our needed sector is the first sector of granule 1 which is sector 6. Thus, cylinder 26,
sector 6 is passed by the systemto the disk driver which reads that sector into the file
buffer. Are you still with us?

CYL | 25| 26| 26| 26 || 27| 27| 27 || 28| 28| 28 ||
GAN | 2] O 2| 2] O 1] 2] O 1] 2]
I | I I [| I I [I I [l...
GAN | 3| 4] 5| 6| 7| 8| 9] 0] 11] 12]]...
SEC | 18 || 19| 20| 21 || 22| 23| 24 || 25| 26| 27 ||
I [I I | I I | I I [__

Note: Top figures are physical; bottomfigures are rel ative.

Figure 6-3 Illustration of 2nd extent for BULKLQAD DAT

If, by chance, the systemcannot find the desired granule in any of the extent fields of
the FCB, it nmust go back to the directory using the DEC and DRI VE fields of the FCB and
see if the granule is actually part of the file. This would only happen if the file had
nore than four extents or the access was extending the file (at which point additional
space woul d be al |l ocat ed).

Woon recognition of the conplexity of the preceding discussion, it wll severely lint
your desire to control your own file allocations. The D3OS does the job well; however, the
system nust entertain sufficient overhead in order to access the proper disk sector and
dynamcally allocate additional file space as required. A so, the systemnust inhibit the
requesting programfromviol ating protection |evels.

Most of the file access SuperVisor Call requests are self-explanatory and their use is
evident fromthe descriptions contained in chapter 7, |NTERFAQ NG VI A SUPERVI SCRY CALLS.
An inportant point worth remenbering is that the systemw |l automatically advance the
record pointers (NRN and CFFSET) on each @¥EAD and each @WR TE request AFTER PERFCRM NG
THE CPERATICN so that the next record accessed is consecutively sequential to the one
just accessed. This provides sequential 1/0O without need of @CBN calls. Wat we woul d
like to discuss here is some suggested uses for these file access SVGs.

6.3.1 Specific Access Requests

The @XET and @UT requests are fundanentally useful when the program is to be device
i ndependent. By using character 1/Q the specification can be either a devspec or
filespec. O course if a device was opened, all of the other file access routines would
return a "File not open” error code so you nay want to restrict the access to @UT and/ or
@ET or use bit-7 of the FCB as an indicator of file versus device and take the
appropriate action.

The function of @KSP is to backspace one record based on the LR.. Wen a disk file is
accessed via @UT and @XET, it is usually opened with an LRL of 256. However, if you try
to perform a character backspace, the systemw || backspace a full sector. The easy way
around this is to tenporarily change the LRL in the FCB to 1 prior to issuing the @KSP
then restoring the LRL after the @KSP call. The followi ng code illustrates this method:

LD DE, FCBX ; Point to the open FCB

6-11

LD HL, FCBX+9 :Point to the LRL field

LD B, (HL) :P/u the current LRL

LD (HL), 1 ;. &reset to LRL=1

LD A, @BKSP ;1dentify the SVC request
RST 40 ;I nvoke the SVC

LD (HL), B ;Reset to original LRL
JP NZ, | CERR :Transfer on error

If you want to add sequential data to the end of an existing file, you will need to
position to the end of the file after it is opened. Use the @ECF SuperVisor Call request
for this purpose. The SVC will return an "End of file encountered" error if the request
is successful. Any other error code indicates a malfunction. This is one of the few
systemrequests that return an error code upon success so you shoul d be careful when you
use it.

The @READ request is useful when reading nested files. Nested files are those where you
are accessi ng each consecutively but not coincidentally. In this case, the same disk file
I/O buffer can be used for each file. Wen you switch fromone file to another, issue a
@READ so that the systemreloads the buffer with the sector that was bei ng accessed for
the last record read or for the last character obtained from @ET. The @RREAD request
wll force a rereading of the sector identified by the NRN provided that the LR. is
either 1-255 or the file was accessed via @Ul or @ET. What do you do if you were using
LRL=256 and @READ requests whil e maintai ning your own offset pointer. Al you need do in
this case is to decrement the NRN and issue another @EAD. For exanple, the PRO CREATE
editor assenbl er available from M SCSYS uses sector I/O for reading source files. PRO
CREATE maintains its own offset pointer as it extracts lines of code from the disk
buffer. Wen it detects the "*CET fil espec” request for including a nested file, it saves
the current FCB in a save area and then opens the requested file using the same file
buffer. Wen the end of the second file is reached, PRO CREATE restores the saved FCB of
the original file and executes the follow ng code:

LD DE, FCB ;Point to the opened FCB
LD HL, (FCB+10) ; Obtain the current NRN,
DEC HL ; decrenment by one

LD (FCB+10),HL ; and update the FCB

LD A, @GREAD ;1dentify the SVC function
RST 40 ;I nvoke the SVC

JP NZ, | CERR :Transfer on error

The @AW T SuperVisor Call request would be used where you want to read a full sector
(LR=256) into the disk file 1/O buffer, alter it directly in the buffer, then
imediately wite that buffer back to disk. The @MW T wll force the NRN that was
autonatical |y advanced by the @EAD request to be decrenented by one so that it repoints
to the sector corresponding to the buffer contents. It then perforns the requests
necessary to wite the buffer to disk. Note that @WR T is not to be used when the LRL is
not equal to 256 as this SuperVisor Call does not reference the user record buffer.

The @W¥ECF SuperVisor Call request allows you to update the end-of-file (ECF) information
in the directory while still keeping the file in an open state. Cobviously, a simlar
function can be perforned with an @LCSE fol | oned by an @PEN; however, conplications can
prevail with a CO.CSE-CPEN conbi nation. Renenber that the close operation restores the
filespec to the FCB but cannot reclaim the password. Therefore, if the FCB was
referencing a password protected file, the subsequent CPEN will fail unless you had saved
the original filespec sonewhere in the programand restuffed the FCB prior to the second
CPEN request. A so, the CLOSE- GPEN conbi nation updates the MDD flag and date as required,
and checks to see if it can deallocate any unused file space. This takes tine. If all you
want to do is to update the ECF, use the @W¥ECF function.

e last function that can be performed by the file access routines is the allocation of
di sk space to a file. Afile can be pre-allocated by the CREATE |library command but t hat

6-12

also inhibits any deall ocati on of unused space. The following routine will allocate file
space without any restriction on deallocation to a file opened with LR. equal to 256.
Register pair DE is expected to be pointing to the file's FCB. The file's size is passed
in register pair BC as the nunber of 256-byte records. A successful allocation wll be
indicated by the setting of the Z fl ag.

WRERN LD A B ;1f space = 0, don't
OR C ; do any allocation
RET Z
DEC BC ; Adjust for O offset
LD A, @PCSN ;Position to the "size"
RST 40
LD A @R TE ;Wite a dunmmy sector
RST 40

JR NZ, WRERN1 :Branch on error

LD A, GREW :Now rewind the file
RST 40

LD HL, O :Set ERN record to O
LD (FCB1+12) , HL

RET

WRERN1 CP 27 :Disk Full?

RET NZ :Back on sonme other error
LD A, GREMOV : Renove what can't fit
RST 40

LD A, 27 :Back with error code

OR A ; and NZ flag

RET

Examne the functions of the file access routines listed in chapter 7. They wll relate
the scope of access pernmtted by the operating system Mre conplex |evels of access such
as |SAM or random access of variable length records can be supported by building
appropriate routines from the provided record 1/O and character 1/O routines. The
following section will provide details on each field of the File Control Bl ock. Mbst
applications will not have to bother with the contents of the FCB. If you feel the need,
gotoit.

6.4 The FILE CONTROL BLOCK (FCB)

The File Control Block (FCB) is a 32-byte region that is used by the systemto interface
with a file that has been "opened' for access . Its contents are extremely dynamc. As
records are witten to or read from the disk file, specific fields in the FCB are
nodified. It is extrenely inportant that during the tine period that a file is open, you
avoi d changing the contents of the FCB unless you are sure that its alteration will in no
way effect the integrity of the file.

The FGB initially contains the specification of the file that is to be opened for access.
Woon a successful "open", the systemw |l replace the specification with data derived
fromthe file's directory entry. The file specification (wthout any password field) will
be returned to the FCB when the file is closed. The information contained in each field
of the FAB is as fol |l ows:

6.4.1 TYPE code of the control block - <Byte 0>

This byte contains certain attributes of the control block. It correlates to the TYPE
byte of the Device Control Block, especially in light of the fact that both the DCB and
the FCB can be associated with a device specification (the FCB by the nature of a ROUTE
toafile). The TYPE byte uses each bit as a flag per the follow ng specifications:

Bit 7 If set to a "1", it will indicate that the file is in an open condition; if
set to a "0", the file is assuned closed. This bit can be tested to
determne the "open" or "closed' status of an FCB and is used by the

6-13

Bit 6

Bit 5

Bit 4
Bit 3
Bit 2

Bt 1
Bit O

operating system for such a purpose. The systemis device 1/O handl er also
makes use of this bit to deternmine the necessity for disk file character
I/Q

This bit will be set to a "1" if the file was opened w th UPDATE or greater
access. It indicates to the Q.CSE routine that the application has the
authority to reset the "file open bit" in the directory entry record for the
respective file. The CLCEE routine will not update the directory entry of a
file wthout this bit being set in the FCB

This bit indicates that the opened file is a Partitioned Data Set. The
systemw || set this bit when the file is opened if it detects the presence
of the PDS attribute in the directory entry of the file (DR+O, bit 5).

This bit is reserved for future use by the DCB.
This bit is reserved for future use by the DCB.

This bit will be set to a "1" if any WRTE operation is performed by the
systemon this file while it is open. The bit is used specifically to update
the MD flag in the file's directory entry record when the file is cl osed.

This bit is reserved for future use by the DCB.
This bit is reserved for future use by the DCB.

6.4.2 Input/Qutput Status - <Byte 1>
This byte contains |/O buffer status flag bits used in read/wite operations by the
system The STATUS byte uses each bit as a flag per the foll ow ng specifications:

Bit 7

Bit 6

Bit 5

Bit 4

If this bit is set toa"1", it indicates that 1/Ooperations will be either
record operations of logical record length (LR less than 256 (1-255) or
character 1/Q If set to a"0", only full sector operations or character 1/0O
wll be performed. If you are going to utilize only full sector 1/Q system
overhead is reduced by specifying the LRL at open tine to be O (indicating
256). An LRL of other than 256 will set bit 7 to a "1" when the file is
first opened.

Wen a file's records have been accessed randomy rather than (or in
addition to) sequentially, the system nust be prohibited fromthe altering
the Ending-Record-Nunber (ERN) unless the file is extended beyond its
current ERN This bit is used for that status. If set toa "1", it indicates
that the ERN is to be set to the Next-Record-Nunber (NRN) only if the NRN
exceeds the current value of ERN Wenever the position SVC (@OBN) is
invoked, it will autormatically set bit 6. If bit 6 is set to a "0", then ERN
inthe FCGB will be updated on every WR TE operati on.

It is always necessary for the systemto know whether or not the file buffer
contains the current disk sector as specified by the NRN This bit is
nmaintained for that use. If it is set to a "0", then the disk file buffer
contains the current sector denoted by NRN If it is set to a "1", then the
file buffer does not contain the current sector. Wen a sector is read into
the disk buffer, the system wll reset this bit to show that the buffer
currently hol ds the disk sector specified by the NRN During character 1/Q
the first character CET request will force the systemto transfer a full
disk sector into the file buffer and reset the "buffer current” bit. Bit 5
is autonatically set when the character in the last byte of the buffer has
been transferred to the application in the GET requests. This wll then
indicate that the buffer is not current so that the next GET will force a
read of the next sector.

During file 1/Q an application nmay request a repositioning of the file's
NRNF CFFSET pointer. This nmay be requested via an @KSP, @OBN GREWND,

6-14

@K P, @ECQF, or @FEEKSC SuperVisor Call. It is inportant for the systemto
know whet her or not the disk file buffer has been changed since it was read
fromthe file. If the buffer has been altered, it is necessary to wite the
buffer back to the file prior to any novenment of the file pointer. This flag
conveys such status. If it is set to a "1", it indicates that the buffer
contents have been changed since the buffer was read fromthe file. If it is
set to a "0", the indication is that the buffer has not been nodified. The
system will set this bit whenever a WRTE operation is perforned on the
buffer by either a PUT or the wite of a record (of LRL < 256). The bit is
reset by the system when the buffer is physically witten to the disk via
t he @WRSEC Super VM sor Call request.

Bit 3 The norrmal nethod to reflect changes in a file's directory entry record data
is to update the directory entry only when the file is closed. Thus, the FCB
contains all of the infornation pertinent to the modifications. This keeps
the directory accesses to a mnimum and results in faster file throughput.
However, it is inportant to note that if the system crashes after extensive
file updating (specifically where the file has been extended), the added
information wll be unrecoverable w thout manual corrections to the file's
directory entry record. It is possible to force the systemto al ways update
the directory whenever the system extends the file by witing another
sector. UWattended operation may wutilize this extra neasure of file
protection. It is specified by appending an excl amation mark "!" to the end
of a file specification when the filespec is requested at open tinme. This
bit will then be set by the system It is used to specify that the directory
record is to be updated every time that the NRN exceeds the ERN

Bits 2-0 These bits will contain the access protection level as retrieved fromthe
directory entry record of the file when the file is first opened. The
specific bit pattern wll be adjusted to the protection level granted
according to the password (OMER vs USER) entered at file open tine.

6.4.3 PDS Menber Origin Ofset - <Byte 2>

Wen a Partitioned Data Set (PDS) has been opened for individual menber access (a sector
origin nenber), the PDS linkage routines will adjust the ECF contained in the FCB to be
the | ogical ECF of the nenber. The nenber origin offset is the nunber of relative sectors
between the | ogical ERN of the nmenber and the first relative sector of the nmenber. This
byte will contain that forward offset so that the linkage routines nay be able to
calculate the | ogical beginning of the nenber. The calculation is required for |inkage to
all SuperVisor Calls that reference file positioning forward of the NRN (@KSP, @EWND,

@ON, @EEKSQ) .

6.4.4 Disk File Buffer Pointer - <Bytes 3-4>

This is a pointer to the disk file buffer that is used for all disk I/O associated with
the file. The pointer is a 16-bit address stored in norrmal | ow order - high-order fornmat.
This pointer is the buffer address specified in register pair H. at open tine.

6.4.5 Next Record Nunber Byte Offset - <Byte 5>

Wen a file is accessed with either character 1/Oor record 1/0O of Logical Record Length
less than 256, requests for I/O may not necessarily require the transfer of a physical
sector fromito the disk. Therefore, the system needs a pointer to the byte position
within the buffer that is to be used for the next I/Ooperation. This field contains that
position - it is ternmed an GFFSET within the sector pointed to by the NRN If this of fset
is a zero value, then the next byte to be transferred during an 1/O operation is
dependent on whether or not the buffer contains the current sector as noted by FCB+1, bit
5. The system automatically maintains this CFFSET byte during record and character 1/Q
If your application is performng full sector /O for witing data while it is
maintaining its own character buffering, then it is inportant for it to maintain this
byte when the file is closed if the true end-of-file offset is not at a sector boundary.
Renenber, this offset is a pointer to the next available buffer position and not to the

6-15

position where the | ast character is placed. For instance, after witing three bytes into
positions 0, 1, and 2 of the buffer, the offset must be increnented to "3" since the next
avail abl e buffer position is byte 3.

6.4.6 Logical Drive Nunber - <Byte 6>

This contains the |logical drive nunber in binary of the drive containing the file. It is
absolutely essential that this byte be left undisturbed. It is used by the systems file
access routines to obtain the logical disk drive nunber that physical 1/O is to
reference. It, and the Drectory Entry Code contained in FCB+7 are the only links to the
directory information for the file. Since the operating system supports a maxi mum of
eight logical drives, the logical drive nunber is contained in a 3-bit field. The
renaining bits are reserved for future use in | arge di sk segnentati on.

Bits 7-3 This field is reserved by the DO5 for future use.
Bits 2-0 This field contains the |ogical drive nunber where the file is stored.

6.4.7 Directory Entry Code - <Byte 7>

This field contains the Drectory Entry Code (DEC) which points to the file's prinary
directory entry. This code is the relative position in the Hash Index Table where the
hash code for the file's directory entry appears. Wenever the systemneeds to access the
directory for the open file, it must use both this DEC and the | ogical DR VE to uniquely
specify the proper directory record. Do not tanper with this byte. It nmay be interesting
to note that the device name, which uniquely identifies a device, and the DEG DR VE
which uniquely identifies a file, are contained in the same fields of their respective
control bl ocks.

6.4.8 Ending Record Nunmber Byte Offset - <Byte 8>

This field contains the byte offset in the Ending Record Nunber which points to one byte
past the end-of-file. This byte is simlar to FCBt5 except it pertains to the ERN rather
than the NRN If a file has been extended during the tine it was open, then the NRN byte
of fset and NRN becone the new ERN byte offset and ERN when the file is cl osed.

6.4.9 Logical Record Length - <Byte 9>

This field contains the logical record length in effect when the file was opened. This
may not be the same LRL that exists in the directory. The directory LRL is generated at
the file creation and will never change unless another file is cloned to it.

6.4.10 Next Record Nunber <Bytes 10-11>

This field contains the Next-Record-Nunber (NRN), which is a pointer to the relative
sector for the next 1/O operation. Wen a file is opened, NRNis set to zero indicating a
pointer to the beginning of the file. Each physical sector 1/O advances NRN by one. An
@EWND SuperVisor Call request will reset the NRNto zero.

6.4.11 Ending Record Nunber <Bytes 12-13>

This field is a pointer to the last sector of the file regardl ess of whether the sector
is a full sector (i.e. all bytes occupied and ECF-GFFSET has a zero value) or a partial
sector (i.e. ECF-CFFSET is not equal to zero). In a null file (one with no records), ERN
wll be equal to zero. If one sector had been witten, ERN would be equal to one.

6.4.12 Starting Extent - <Bytes 14- 15>

This field contains the sanme information as the first extent of the directory. This
represents the starting cylinder of the file (FCB+14) and the starting relative granul e
within the starting cylinder (FCBt+15). FCB+15 also contains the nunber of contiguous
granules allocated in the extent. This can always be used as a pointer to the begi nning
of the file referenced by the FCB. During any file access, this field will be searched
first to see if it contains the granule which stores the physical sector that is being
r ef er enced.

6-16

6.4.13 Extent Quad 1 - <Bytes 16-19>

The QJAD is a 4-byte field that contains the granule allocation information for one
extent of the file as well as the total quantity of granules contained in the file
logically prior to this extent. Relative bytes zero and one contain the cunul ative nunber
of granules allocated to the file up to but not including the extent referenced by this
field. This quantity is calculated by the system by adding up all the nunber of
contiguous granules allocated in previous extents. Relative byte two contains the
starting cylinder of this extent. Relative byte three contains the starting relative
granule for the extent and the nunber of contiguous granules. Relative bytes two and
three are obtained directly froman extent field of the directory entry record. Figure 6-
4 illustrates the Extent Quad.

6.4.14 Extent Quad 2 - <Bytes 20-23>
This field contains infornation simlar to the first Extent Quad but for a second extent
of the file.

6.4.15 Extent Quad 3 - <Bytes 24-27>
This field contains information simlar to the first
of the file.

Extent Quad but for a third extent

6.4.16 Extent Quad 4 - <Bytes 28-31>
This field contains information simlar to the first
of the file.

Extent Quad but for a forth extent

I] I

of contiguous

| starting |e r|total |

granules up to |cylinder || a]grans|
this extent | | nj |

_ I I [| | __
byte 0 byte 1 byte 2 byte 3

Figure 6-4 An FCB Extent Quad

The File Control Bl ock contains information on only five extents at any one time - one of
which is always the first extent of the file (that which is placed into STARTI NG EXTENT.
Wen a file is first opened, data for the STARTING EXTENT is extracted fromthe first
extent of the file's primary directory entry record (the FPDE). If the file has nore than
one extent, data for the EXTENT QUADS is calculated for each additional extent that
contains allocation information in the FPDE. This |eaves, at a mninum one EXTENT QUAD
vacant .

Each time a record is accessed, the system determines if the record is located in the

starting EXTENT. If not, then the system searches the extent QJADs. If the record is
located in one of the QUADS, then the data contained in all QJADS to the left of the
"desired” QUAD is shifted right by one QUAD and the data from the "desired" QJAD is

placed in the first extent QUAD field. This action is undertaken so that extent QUADs
that contain records recently accessed will be searched first. If a record in a file is
accessed which is not contained in any FCB extent QUAD field, then the D35 must access
the directory entries for the file and locate that extent which contains the needed
granule (and hence the needed record). Once the extent is located, the data in extent
QUAD fields 1-3 will be shifted to occupy fields 2-4 and the new data will be placed into
extent QUAD field 1. If the desired record cannot be |ocated in any extent of the file,
the systemw ||l attenpt to allocate additional space necessary to position the record.

A though the operating systemcan handle a file of any nunber of extents, it is wise to
keep the total nunber of extents small. If the file has nore than five extents,
additional directory accessing nust be done to locate the extent containing the desired

6-17

record. If afile has nore than four extents, then it will occupy nore than one directory
entry record and thereby reduce the nunber of file slots available. The nost efficient
file is one with a single extent although the file can be at nost 32 granules in size.
The nunber of extents can be reduced by copying the file to a diskette containing a great

deal of free space.

6-18

7. Interfacing via SuperVisor Calls
7.1 SUPERVI SOR CALL LI NKAGE

This chapter discusses specific |inkage necessary to comunicate with the operating
systemfor service requests at the assenbly | anguage | evel. Requests for systemresources
are acconplished via SuperVisor Calls (SVCs). The follow ng sections describe each SVC
and the register contents passed to and fromthe system

The DO5 does not affect the contents of the Z-80's alternate registers (AF, BC, DE,
and H.'). Were the DO5 nakes use of index registers I X and IY, it wll save them prior
to their use and restore them when that use is conpleted. The exception, of course, is
where | X and/or 1Y are used to pass infornation to or fromthe D5

Each SVC specifies what registers are altered by the system The AF register wll always
be altered. Mst SVCs incorporate return codes. Were applicable, the return code is
passed in the accumul ator and the Z-flag status is indicative of an error or success [Z
= success, NZ = error]. Some SVCs use only the state of the Zflag to indicate a
pass/fail situation. The return code convention is specified under the |inkage shown for
each SVC

SuperVisor Calls utilize a number from O to 127. Nunbers from 128 to 255 are not
interpreted as SVCs but are used internally by the D05 for other system overlay
i nvocations. The SVC nunber is placed in the accunul ator once the registers particular to
the SVC are set up and control is passed to the operating systemby issuing a RST 40 (RST
28H) Z-80 instruction.

7.1.1 Adding or Changing SVC Entries

Sone programrers rmay find it useful to alter the perfornmance of existing SuperVisor Calls
to suit unique situations. A program rmay even be witten that could utilize additional
SVGs. Four SVC slots [nunbers 124-127] have been provided for application prograns. An
examnation of the following SVC tables will reveal a good handful of SVC nunbers that
have not yet been assigned by Logical Systens. Caution is to be observed in utilizing any
of these reserved slots since you may find your programunusable with a future rel ease of
the operating system [Renenber that four RST instructions: RST 8, RST 16, RST 24, and
RST 32 are available for use by application software.]

In any event, be it nodification of the vector for an existing SVC or the addition of
your own into a "user"” SVC the interface is sinple. The SVC table is always (and wll
always) be origined at the start of a RAM page. The page address (i.e. the high-order
byte of the SVC table) can be obtained fromthe systemvia the FLAGS pointer returned by
the @LAGS SVC. Since the low order byte starts out with O for SVG 00, you can locate the
exact address for the SVC vector by multiplying the SVC nunber by two, |oading the result
into the low order byte of a register pair (say L), then |loading the high order byte of
that register pair (say H with the SVC table base address (FLAGS$+26). This will then
index the | ow order byte of the SVC vector. The SVC vectors are stored in standard | ow
hi gh order.

7.2 PROGRAM ENTRY AND EXI'T CONDI Tl ONS

Wen the operating systemexecutes a programeither fromDOS Ready or via an SVC (@WN\D
@WMN\DR, or @UN), certain conditions prevail. These conditions relate to the register
contents and the stack | ocation. The useful register contents are as foll ows:

BC Contains a pointer to the start of the command line. This is useful for
those applications desiring to know what program nane caused their
i nvocation (as in the command-1ine argunments applicable to C prograns).

7-1

DE Contains a pointer to the File Control Block used to open the programfile
being run. This may prove useful to access the program file as data since
the file is already in an open condition (the PRO-PaDS utility from M SCBYS
makes use of this condition).

H. Contains a pointer to the first non-blank character on the comrand |ine
which termnated the parsing of the name entered in order to execute the
program This pointer should be used if you are going to parse command-Iine
file specifications using @SPEC or paraneters via @PARAM

If the program was executed from DO5 Ready or via @WD, the stack pointer (SP) wll
point to the system stack which has approximately 150 bytes of storage space. If the
program was executed via @RUN or @MWDR then the stack pointer contains whatever was
establ i shed by the invoking program In any event, the top of the stack will contain the
return address to the nodul e which is invoking the program be it another programor the
system

If you are going to swtch stacks, you should be aware that the systems task processor
requires possibly 40 bytes of stack space. The exact anount will depend on what tasks are
active. Release 6.0.0 of the DC5 also has a restriction that limts the stack to reside
bel ow X F400'. If you are going to use the @ANK request to toggl e nenmory banks, then the
stack nust reside bel ow X 7FFE .

Wien your programtermnates, it should load register pair HL with a return code. If the
programtermnates without error, use a return code of 0. If the termnation is due to a
D35 1/O error or other error being returned by an SVC as noted in the error dictionary,
load that error nunber into H.. For all other error conditions, the suggested procedure
istoload a -1 (XFFFF) into register pair H.. After loading H, you can either issue a
RET instruction or issue an @X T SuperVisor Call. Note that the RET exit nethod nmandat es
that you maintain the integrity of the stack pointer so that it is pointing to a valid
return address. You may want to establish exit code that reloads the stack pointer wth
the SP contents that you saved when first executing the program Thus, the SP will always
be correct for an RET. An @X T termnation will always restore control to the operating
systemeven if the programwas invoked via an @WDR Therefore, if you suspect that your
programw || be invokabl e from another program you shoul d use the RET nethod for program
termnation.

7.3 SUPERVI SOR CALLS LI STED ALPHABETI CALLY

Nane Svc # Pur pose

@BORT SVG 21 Abnor nal program exi t

@\DTSK SVG 29 Add a task process

@BANK SVG 102 RAM bank swi t chi ng

@BKsP SVG 61 File record backspace

@BREAK SVG 103 Est abl i sh <BREAK> vect or

@HN O SVG 20 Devi ce chain character /0
@XBRKC SVG 106 Check for a keyboard BREAK
@KDRV SVG 33 Check disk drive availability (& 10g)
@KECF SVG 62 Check for file's end-of-file (ECQF)
@xTsK SVG 28 Check task slot availability
@LCsE SVG 60 d ose an open disk file

@aLs SVG 105 d ear the Video screen

@wn\Dl SVG 24 Interpret and execute a comrand
@WN\DR SVG 25 Execute a command and return

@TL SVG 05 Control a device chain

@ATE SVG 18 bt ai n systemdate

@ANT SVG 42 Initialize a disk controll er

7-2

@CRES SVG 43 Reset a disk controller

@CSTAT SVG 40 Test disk controller status

@EBUG SVG 27 Ent er syst em DEBUG package

@ECGHEX SVG 96 Convert decinmal string to binary

@ RRD SVG 87 Read a DEC s directory record

@ RAR SVG 88 Wite a DEC s directory record

@ V16 SVG 94 16-bit by 8-bit unsigned division

@ Vv8 SVG 93 8-bit by 8-bit unsigned division

@ R SVG 34 btain or display directory data

@sk SVG 02 Character output to *DO (video display)
@SPLY SVG 10 Line output to *DO (video displ ay)
@RRCR SVG 26 Post an error nessage

@XT SVG 22 Exit programw th return code

@EXT SVG 79 Fetch a default file extension

@LAGSS SVG 101 (btai n systemfl ags poi nter

@NAME SVG 80 otain fil espec given DEC and drive
@SPEC SVG 78 Fetch and parse a file specification
@ET SVG 03 Character input froma device/file
@sTDCB SVG 82 bt ai n DCB poi nter gi ven devspec
@sTDCT SVG 81 ot ai n DCT pointer given drive

@sTMD SVG 83 btain entry poi nt given nodul e name
@DFMT SVG 52 Pass "format device" to controller
@EX16 SVG 99 Convert 16-bit binary to ASAI| hex
@X8 SVG 98 Convert 8-bit binary to ASOI hex
@EXDEC SVG 97 Convert 16-bit binary to ASA | deci nal
& G SVG 100 Cbtain or alter HGHS/ LOMN

@NT SVG 58 pen a new or existing file

@PL SVG 00 Reboot the system

@BD SVG 08 Scan the *KI devi ce

aXEY SVG 01 btain a character fromthe *Kl devi ce
@EYI N SVG 09 btain a line of characters from*K (or JQ)
@LTSK SVG 32 Renove task assignnent during execution
@ QD SVG 76 Load a programfile

@aQcc SVG 63 Return file's current record nunber
Qo SVG 64 Return file's ending record nunber
@QOCER SVG 11 Send a nmessage to the Job Log (*JL)
@Qoxor SVG 12 D splay and | og a nessage (*DO and *JL)
@G SVG 13 Send a nessage line to a device

@AL16 SVG 91 16-bit by 8-bit into 24-bit multiplication
@AL8 SVG 90 8-bit by 8-bit into 8-bit nultiplication
(ODPEN SVG 59 pen an existing file

@PARAM SVG 17 Parse a command |ine of paraneters
@PAUSE SVG 16 Del ay execution for a tine period
@PECF SVG 65 Position to the end of a file

@8N SVGC 66 Position to a designated record of a file
@R NT SVG 14 Send a nessage line to *PR device

@RT SVG 06 Send a character to *PR device

@ur SVG 04 Send a character to a device/file
@RAMD R SVG 35 btain directory information

@RDHDR SVG 48 Read 1D field (where supported)

@RDSEC SVG 49 Read a di sk sector

@RDSSC SVG 85 Read a disk's directory sector

@ROTRK SVG 51 Read a di sk track (where supported)
@READ SVG 67 Read a file record

@EMDV SVG 57 Renove a file fromdi sk

7-3

@RENAM SVG 56 Renane a file on disk

@BV SVG 68 Rewind a file to its beginni ng
@MIrsK SVG 30 Renove a task assi gnnent

@PTSK SVG 31 Repl ace a task assignment during execution
@RREAD SVG 69 Reread the | ast sector read

@SLCT SVG 47 Resel ect a busy drive until avail able
@STCR SVG 44 Restore a drive to cylinder O

@RUN SVG 77 Run a programgiven its fil espec
AQRNRT SVG 70 Rewite the ast sector witten
@EEK SVG 46 Seek to a disk cylinder

@EEKSC SVG 71 Seek a record of a file

@Kl P SVG 72 Skip the next record of a file

@LCT SVG 41 Select a disk drive

@QANND SVG 104 Activate hardware sound generation
@TEPI SVG 45 Issue track step-in to controller

@l Me SVG 19 btain the systemtine

@/DCTL SVG 15 Various video control functions

@ER SVG 73 Wite then verify a file record
@/RSEC SVG 50 Verify the readability of a disk sector
@ECF SVG 74 Drectory update a file's end-of -file
@VHERE SVG 07 Resol ve run-ti ne address

@R TE SVG 75 Wite a file record

@NRSEC SVG 53 Wite a disk sector

@NRSSC SVG 54 Wite a disk directory sector

@WRTRK SVG 55 Wite a disk track (format data)

7.4 SUPERVI SOR CALLS LI STED NUMERI CALLY

Nane Svc # Pur pose

@ PL SVG 00 Reboot the system

aXEY SVG 01 btain a character fromthe *Kl devi ce
@sk SVG 02 Character output to *DO (video display)
@ET SVG 03 Character input froma device/file
@ur SVG 04 Send a character to a device/file

@TL SVG 05 Control a device chain

@RT SVG 06 Send a character to *PR device

@VHERE SVG 07 Resol ve run-ti ne address

@BD SVG 08 Scan the *KI devi ce

@EYI N SVG 09 btain a line of characters from*K (or JQ)
@SPLY SVG 10 Line output to *DO (video displ ay)
@QOCER SVG 11 Send a nmessage to the Job Log (*JL)
@Qoxor SVG 12 D splay and | og a nessage (*DO and *JL)
a@mBG SVG 13 Send a nessage line to a device

@R NT SVG 14 Send a nessage line to *PR device
@/DCTL SVG 15 Various video control functions

@PAUSE SVG 16 Del ay execution for a tine period
@PARAM SVG 17 Parse a command |ine of paraneters
@ATE SVG 18 bt ai n systemdate

@l Me SVG 19 btain the systemtine

@HN O SVG 20 Devi ce chain character /0

@BORT SVG 21 Abnor nal program exi t

@XT SVG 22 Exit programw th return code

rsvd SVG 23 reserved

@wn\Dl SVG 24 Interpret and execute a comrand

7-4

@WN\DR SVG 25 Execute a command and return

@RRCR SVG 26 Post an error nessage

@EBUG SVG 27 Ent er syst em DEBUG package

@xTsK SVG 28 Check task slot availability

@\DTSK SVG 29 Add a task process

@MIrsK SVG 30 Renove a task assi gnnent

@PTSK SVG 31 Repl ace a task assi gnment during execution
@LTSK SVG 32 Renove task assignnent during execution
@KDRV SVG 33 Check disk drive availability (& 10g)
@ R SVG 34 btain or display directory data
@RAMD R SVG 35 btain directory information

rsvd SVG 36 reserved

rsvd SVG 37 reserved

rsvd SVG 38 reserved

rsvd SVG 39 reserved

@CSTAT SVG 40 Test disk controller status

@LCT SVG 41 Select a disk drive

@ANT SVG 42 Initialize a disk controll er

@CRES SVG 43 Reset a disk controller

@STAR SVG 44 Restore a drive to cylinder O

@STEPI SVG 45 Issue track step-in to controller
@EEK SVG 46 Seek to a disk cylinder

@SLCT SVG 47 Resel ect a busy drive until avail able
@RDHDR SVG 48 Read ID field (where supported)
@RDSEC SVG 49 Read a di sk sector

@/RSEC SVG 50 Verify the readability of a disk sector
@ROTRK SVG 51 Read a di sk track (where supported)
@DFMT SVG 52 Pass "format device" to controller
@NRSEC SVG 53 Wite a disk sector

@NRSSC SVG 54 Wite a disk directory sector

@WRTRK SVG 55 Wite a disk track (format data)
@RENAM SVG 56 Renane a file on disk

@EMDV SVG 57 Renove a file fromdisk

@NT SVG 58 pen a new or existing file

(ODPEN SVG 59 pen an existing file

@LCsE SVG 60 d ose an open disk file

@BKsP SVG 61 File record backspace

@KECF SVG 62 Check for file's end-of-file (ECQF)
@aQcc SVG 63 Return file's current record nunber
Qo SVG 64 Return file's ending record nunber
@PECF SVG 65 Position to the end of a file

@8N SVGC 66 Position to a designated record of a file
@READ SVG 67 Read a file record

@RBEW SVG 68 Rewind a file to its begi nni ng
@RREAD SVG 69 Reread the | ast sector read

AQRNRT SVG 70 Rewite the ast sector witten
@EEKSC SVG 71 Seek a record of a file

@Kl P SVG 72 Skip the next record of a file

@ER SVG 73 Wite then verify a file record
@ECF SVG 74 Drectory update a file's end-of -file
@R TE SVG 75 Wite a file record

@ QD SVG 76 Load a programfile

@RUN SVG 77 Run a programgiven its fil espec
@SPEC SVG 78 Fetch and parse a file specification
@EXT SVG 79 Fetch a default file extension

7-5

@NAME SVG 80 otain fil espec given DEC and drive
@sTDCT SVG 81 bt ai n DCT pointer given drive
@sTDCB SVG 82 bt ai n DCB poi nter gi ven devspec
@sTMD SVG 83 btain entry poi nt given nodul e name
rsvd SVC 84 reserved

@RDSSC SVG 85 Read a disk's directory sector

rsvd SVC 86 reserved

@ RRD SVG 87 Read a DEC s directory record

@ RAR SVG 88 Wite a DEC s directory record

rsvd SVG 89 reserved

@AL8 SVG 90 8-bit by 8-bit into 8-bit nultiplication
@AL16 SVG 91 16-bit by 8-bit into 24-bit multiplication
rsvd SVG 92 reserved

@ V8 SVG 93 8-bit by 8-bit unsigned division

@ V16 SVG 94 16-bit by 8-bit unsigned division
rsvd SVG 95 reserved

@ECGHEX SVG 96 Convert decinmal string to binary
@EXDEC SVG 97 Convert 16-bit binary to ASAI| deci nal
@X8 SVG 98 Convert 8-bit binary to ASOI hex
@EX16 SVG 99 Convert 16-bit binary to ASAI| hex
& G SVG 100 Cbtain or alter HGHS/ LOMN

@LAGSS SVG 101 (btai n systemfl ags poi nter

@BANK SVG 102 RAM bank swi t chi ng

@BREAK SVG 103 Est abl i sh <BREAK> vect or

@AND SVG 104 Activate hardware sound generation
@a@Ls SVG 105 Check for keyboard BREAK

@XBRKC SVG 106 d ear the Video screen

rsvd SVG 107 reserved

rsvd SVG 108 reserved

rsvd SVG 109 reserved

rsvd SVG 110 reserved

rsvd SVG 111 reserved

rsvd SVG 112 reserved

rsvd SVG 113 reserved

rsvd SVG 114 reserved

rsvd SVG 115 reserved

rsvd SVG 116 reserved

rsvd SVG 117 reserved

rsvd SVG 118 reserved

rsvd SVG 119 reserved

rsvd SVG 120 reserved for ARONET use

rsvd SVG 121 reserved for ARONET use

rsvd SVG 122 reserved for ARONET use

rsvd SVG 123 reserved for ARONET use

rsvd SVG 124 Avail abl e for user prograns

rsvd SVG 125 Avail abl e for user prograns

rsvd SVG 126 Avail abl e for user prograns

rsvd SVG 127 Avail abl e for user prograns

7-6

7.5 SUPERVI SOR CALLS LI STED BY FUNCTI ON GROUP
7.5.1 Character 1/0

Nane Svc # Pur pose

@XEY SVG 01 btain a character fromthe *Kl devi ce
@sk SVG 02 Character output to *DO (video display)
@ET SVG 03 Character input froma device/file
@ur SVG 04 Send a character to a device/file

@TL SVG 05 Control a device chain

@RT SVG 06 Send a character to *PR device

@BD SVG 08 Scan the *KI devi ce

@/DCTL SVG 15 Peek/ Poke vi deo by row col um

@HN O SVG 20 Devi ce chain character /0

7.5.2 Line I/O

Nane Svc # Pur pose

@EYI N SVG 09 btain a line of characters from*K (or JQ)
@ShLY SVG 10 Line output to *DO (video displ ay)

@QOCER SVG 11 Send a nmessage to the Job Log (*JL)

@Qoxor SVG 12 D splay and | og a nessage (*DO and *JL)

@G SVG 13 Send a nmessage line to a device

@R NT SVG 14 Send a nessage line to *PR device

@/DCTL SVG 15 Vi deo RAM <-> User RAM

7.5.3 Data Conversion

Nane Svc # Pur pose

@PARAM SVG 17 Parse a command |ine of paraneters

@AL8 SVG 90 8-bit by 8-bit into 8-bit nultiplication
@AL16 SVG 91 16-bit by 8-bit into 24-bit multiplication
@ V8 SVG 93 8-bit by 8-bit unsigned division

@ V16 SVG 94 16-bit by 8-bit unsigned division

@ECGHEX SVG 96 Convert decinmal string to binary

@EXDEC SVG 97 Convert 16-bit binary to ASA | deci nal
@X8 SVG 98 Convert 8-bit binary to ASOI hex

@EX16 SVG 99 Convert 16-bit binary to ASAI| hex

7.5.4 Disk Controller Communications

Nane Svc # Pur pose

@XCSTAT SVG 40 Test disk controller status

@LCT SVG 41 Select a disk drive

@ANT SVG 42 Initialize a disk controll er

@CRES SVG 43 Reset a disk controller

@STAR SVG 44 Restore a drive to cylinder O

@TEPI SVG 45 Issue track step-in to controller
@EEK SVG 46 Seek to a disk cylinder

@SLCT SVG 47 Resel ect a busy drive until avail able
@RDHDR SVG 48 Read 1D field (where supported)
@RDSEC SVG 49 Read a di sk sector

@/RSEC SVG 50 Verify the readability of a disk sector
@ROTRK SVG 51 Read a di sk track (where supported)
@DFMT SVG 52 Pass "format device" to controller

7-7

@RSEC SVG 53 Wite a disk sector
@NRSSC SVG 54 Wite a disk directory sector
@WRTRK SVG 55 Wite a disk track (format data)

7.5.5 File Access

Nane Svc # Pur pose

@ET SVG 03 Character input froma device/file
@ur SVG 04 Send a character to a device/file
@BKSsP SVG 61 File record backspace

@KECF SVG 62 Check for file's end-of-file (ECQF)
@aQc SVG 63 Return file's current record nunber
Qo SVG 64 Return file's ending record nunber
@PECF SVG 65 Position to the end of a file

@8N SVGC 66 Position to a designated record of a file
@READ SVG 67 Read a file record

@RBEW SVG 68 Rewind a file to its beginni ng
@RREAD SVG 69 Reread the | ast sector read

AQRNRT SVG 70 Rewite the ast sector witten
@EEKSC SVG 71 Seek a record of a file

@Kl P SVG 72 Skip the next record of a file

@ER SVG 73 Wite then verify a file record
@ECF SVG 74 Drectory update a file's end-of -file
@R TE SVG 75 Wite a file record

7.5.6 File Control

Nane Svc # Pur pose

@RENAM SVG 56 Renane a file on disk

@EMDV SVG 57 Renove a file fromdi sk

@NT SVG 58 pen a new or existing file

(ODPEN SVG 59 pen an existing file

@LCsE SVG 60 d ose an open disk file

@ QD SVG 76 Load a programfile

@RUN SVG 77 Run a programgiven its fil espec
@SPEC SVG 78 Fetch and parse a file specification
@EXT SVG 79 Fetch a default file extension
@NAME SVG 80 otain fil espec given DEC and drive

7.5.7 System Control

Nane Svc # Pur pose

@PL SVG 00 Reboot the system

@/DCTL SVG 15 Various video control functions
@PAUSE SVG 16 Del ay execution for a tine period
@BORT SVG 21 Abnor nal program exi t

@XT SVG 22 Exit programw th return code
@wn\Dl SVG 24 Interpret and execute a comrand
@WN\DR SVG 25 Execute a command and return
@RRCR SVG 26 Post an error nessage

@EBUG SVG 27 Ent er syst em DEBUG package

& G SVG 100 Cbtain or alter H G/ LOM
@LAGSS SVG 101 (btai n systemfl ags poi nter
@BANK SVG 102 RAM bank swi t chi ng

@BREAK SVG 103 Est abl i sh <BREAK> vect or

@XBRKC

SVG 106

Check for keyboard BREAK

@LS

SVG 105

d ear the Video screen

7.5.8 SystemData

Nane Svc # Pur pose

@/DCTL SVG 15 btain the video cursor position
@ATE SVG 18 bt ai n systemdate

@l Me SVG 19 btain the systemtine

@KDRV SVG 33 Check disk drive availability (& 10g)
@ R SVG 34 btain or display directory data
@RAMD R SVG 35 btain directory information

@sTDCT SVG 81 ot ai n DCT pointer given drive
@sTDCB SVG 82 bt ai n DCB poi nter given devspec
@sTMD SVG 83 (btain entry poi nt given nodul e name
@RDSSC SVG 85 Read a disk's directory sector

@ RRD SVG 87 Read a DEC s directory record

@ RAR SVG 88 Wite a DEC s directory record

& G SVG 100 Cbtain or alter HGHS/ LOMN

@LAGSS SVG 101 (btai n systemfl ags poi nter

7.5.9 Task Process Control

Nane Svc # Pur pose

@xTsK SVG 28 Check task slot availability

@\DTSK SVG 29 Add a task process

@MIrsK SVG 30 Renove a task assi gnnent

@PTSK SVG 31 Repl ace a task assi gnment during execution
@LTSK SVG 32 Renove task assignnent during execution

7.5.10 M scel | aneous

Nane Svc # Pur pose
@VHERE SVG 07 Resol ve run-ti ne address
@PARAM SVG 17 Parse a command |ine of paraneters

7.6 SUPERVI SOR CALL DETAILS

7.6.1 @BORT SVG 21

This SVC will cause an abnornal program exit and return to DG5 Any JQ execution in
progress will cease. @BCRT functions by loading the H. register pair wth a value of
X FFFF and passing control to @X T.

Regi sters Affected: Not applicable.

7.6.2 @DTSK SVGC- 29

This SM\Cwll add an interrupt |level task pointed to by your Task Control Bl ock (TCB) to
the real time clock task processor Task Control Bl ock Vector Table. The task slot can be
0-11; however, some slots are already assigned to certain functions in the D35 The SVC
@XKTSK, can be used to test for slot availability. S ot assignments O-7 are low priority
tasks, slots 8-10 are nediumpriority tasks, and slot 11 is a high priority task. Note:
The TCB is a pointer to a word of RAM containing the address of the task driver entry
point and not to the location of your task driver. Detailed interfacing on background
tasks is in Chapter 8, the Appendi x, on TASK PROCESSCR

Regi sters Affected: AF, H..

Entry

DE Poi nter to your Task Control Bl ock (TCB).

C Contai ns the task slot assignment nunber.
7.6.3 @BANK SVG- 102

This SVC deals with nermory bank use. The top half of the first 64K block is bank 0, and
the second 64K is banks 1 and 2. DO5 supports a total of 8 menory banks of 32K each
(nunbered 0-7). See Chapter 8, the Appendix, on BANK SWTCH NG for programming details
and illustrations. Internally, the DCS nmakes use of three storage bytes: the BAR contains
the bit-image of Bank Available RAM the BUR contains the bit-inmage of Bank Used RAM and
LBANKS$ contains the nunber (0-7) of the currently resident bank. These storage areas are
not directly accessible to the programrer but are referenced through the SVC functions.
In the interfacing register protocol identified bel ow register-B passes a function code.

Registers Affected: AR, BC [H. if a transfer is requested].

Bank Request [optional transfer]

Entry:

B 0

C Bank nunber (0-7). (ptionally set bit-7 to transfer to the address specified
inregister pair H.

H. ptional address to transfer to in the new bank. This option is sel ected by
setting bit-7 of register-C

Exit:

B Returns a O.

C Returns the previously resident bank nunber (0-7). If a transfer has been
specified (via bit-7 set), bit-7 will renain set.

A Returns any error code if NZ condition.

Nz Bank not there.

Bank Rel ease

Entry:

B 1; Reset bank in C
C Bank nunber.

7-10

Bank Availability Test

Entry:

B 2; Test if bank Cin use.
C Bank nunber.

Exit:

NZ I n use.

Bank Reservati on Request

Entry:

B 3; Set bank in C
C Bank nunber .
Exit:

NZ A ready in use.

Wiat Bank i s Resident

Entry:

B 4, Return current installed bank.

Exit:

A Returns the bank nunber (0-7) of the currrently resident bank.

Note: The coding of the @ANK routine will not return an error if you try to reset
a Bank Used RAM (BUR that is "in-use" because it is not installed. The way
i n whi ch bank-reset should be performed is to know whi ch one you were using
and nmade in-use. Note that even though @ANK pernits you to reset a non-
exi stant bank, if you try to enable it, you will get an error since the
enabling routine will not permt the selection of a bank not install ed.

7.6.4 @BKSP SVG 61
This SVC will performa backspace of one logical record in the referenced file.

Regi sters Affected: AF.

Entry:
DE A pointer to the FCB of the file to backspace.
Exit:
A Error return code.
4 Set if the operation was successful.
7.6.5 @REAK SVCG 103

This SVC is used to establish or reset a <BREAK> key vector. The <BREAK> condition is
observed as a background interrupt task. Ohce activated, a <BREAK> will pass control to
your vectored routine providing the current programcounter is above the resident DO5 and
bel ow H GH5.

Regi sters Affected: AF.
Entry:

H. Address of your break vector.
H. X 0000" to restore to system break handl er.

7-11

Note: @X T in SYS1 automatically restores BREAK to the system handler. This is
not done for @WDR Also, don't forget that if DEBUG is enabled, then entry to
DEBUG takes precedence over the BREAK (of course, even though DEBUG has been
enabl ed, if you only have EXEC access, DEBUG is effectively disabl ed).

Your break handling routine will need to debounce the BREAK key and obviously deal
with the stack pointer (since the stack could be anywhere depending on when and
where the break was detected). Sonething of the followi ng is suitable:

ENTRY LD (STKSAV), SP ; Save the stack pointer
PUSH H
LD H, \\BRK ; Point to your BREAK handl er
@BREAK ;Set up "MYBRK' as break entry
MYBRK DI ;Don"t permt further BREAKS
LD B, 80H Wit for fingers to get off
@@AUSE ; of the BREAK key
LD SP, $-$;Plu the orig stack pointer
STKSAV EQU $-2
= ;Interrupts back on
what ever you want
RET ; To what invoked the program
7.6.6 @HN O SVGC- 20

This SVC is used to pass control to the next nodule in a device chain. Its use is
restricted to device filters. Detailed information on the use of @HN Ow Il be found in
chapter 3, DEVI CE | NPUT/ QUTPUT | NTERFAQ NG

Regi sters Affected: Depends on the filter nodul es chai ned.

Entry:

I X Contains a pointer to the Device Control Block assigned to the filter
nodule. This is recovered from the MDDCB field located in the nodule
header. Note: 1X should be saved before loading and restored upon return
from @HN Q

B Contains the 1/Odirection code (CGET=1, PUT=2, CTL=4).

C Contai ns the output character for PUT or CET.

7.6.7 @KBRKC SVC- 106

This SVC was installed effective release 6.2.0. It checks to see if the BREAK key has
been pressed. It also clears the BREAK bit of the KFLAGS if a break condition is
det ect ed.

Regi sters Affected: AF
Exit:

Z BREAK was not det ect ed.
NZ BREAK was detected. SVC returns only when BREAK i s rel eased.

7-12

7.6.8 @KDRV SVC- 33

This routine will check a drive reference to ensure that the drive is in the systemand a
formatted diskette is in place. It will also "log" the disk as far as density, nunber of
sides, and directory cylinder so that the Drive Control Table infornation is correct.

Regi sters Affected: AF

Entry:

C Logi cal drive nunber

Exit:

4 If drive is ready.

NZ If drive is not ready

A Indetermnate and irrel evant.
CF Set if disk is wite protected.

@XECF SVG 62
This SVCwill check for the end-of-file at the current |ogical record nunber.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file to check.
Exit:
A Error return code. If not X 1C, then sonme other error has been encount er ed.
It is necessary to get NZ and A=X 1C for the proper ECF indication.
Z Set if not at the end of file and no error is encountered.
7.6.9 @KTSK SVC 28

This SMCwill check if the referenced task slot (0-11) is available for use. See Chapter
8, the Appendi x, on TASK PROCESSCR for further details.

Regi sters Affected: AF, H..

Entry:
C => The task sl ot nunber (0-11).

Exit:
Z Indicates that the task slot is avail abl e.
Nz Indicates that the task slot is in use.

7-13

7.6.10 @LOSE SVGC- 60

This SVCwill close a file or device. If afileis closed, the directory is updated which
is essential. Al files that have been opened with UPDATE access or greater must be
cl osed.

Regi sters Affected: AF

Entry:
DE A pointer to your File or Device Control Bl ock.
Exit:
A WI1 contain any error return code.
Z Set if no error was encountered.
7.6.11 @LS SVGC- 105

This SVC was installed in release 6.2.0. It will clear the video screen via an @SP of
HOME and CLEAR TGO END- G- FRAME.

Regi sters Affected: AF

Exit:
4 Set if no error was encountered, otherw se reset (i .e. N2).
A Contai ns the error code under an NZ conditi on.

7.6.12 @v\Dl SVG 24

This SVC passes control to the command interpreter. Your command string wll be invoked
just as if it was entered in response to a "DC5 Ready".

Regi sters Affected: Not applicable..

Entry:

H. A pointer to the start of a line buffer containing your comrand string
termnated with an <ENTER> (X 0D). Only the first 79 characters of your
command string wll be used.

7.6.13 @W\DR SVG 25

This SVC will execute a command simlarly to @WD ; however, upon conpletion of the
command, control wll be returned to the address following the @WDR invocation. It is
necessary for all executing commands to naintain the stack pointer and exit via an RET
instruction after loading HL. with the return code. It is possible to limt the execution
to DCB LI Brary commands by setting bit-4 of the GFLAGE (see @LAGS SVO).

Regi sters Affected: Dependent on command execut ed.

Entry:

H. A pointer to the start of a line buffer containing your comnand string
termnated with an <ENTER> (X 0D). Only the first 79 characters of your
command string wll be used.

Exit:
H. WI1 contain the return code of the executing comrand.
7.6.14 @TL SVG 05
This SMC will output a control byte to a logical device. If a device control block is
referenced, the TYPE byte nust permt CIL operation. The file access routines will ignore

@CTL requests and provide a "no error” return code. Control protocol is very unique to
each device. See chapter 3, DEVI CE | NPUT/ QUTPUT | NTERFAQ NG for additional information.

7-14

Regi sters Affected: AF

Entry:
DE A pointer to the DCB or FCB to control output.
C Byte to output.

7.6.15 @ATE SVG 18

Get today's date in display format (XX XX/ XX). The SVC can also be used to obtain the
address of the binary storage for the systemdate. This nay be useful for hardware clock
add- ons.

Regi sters Affected: AF, BC DE

Entry:
H. Buffer area to receive date string.

Exit:
DE Returns a pointer to the 5-byte binary date storage:

DATE+O0 = year in excess 1900;

DATE+1 = day (1-31);

DATE+2 = nonth (1-12);

DATE+3 = bits 0-7 of the year's day;

DATE+4 = holds bit-8 of the year's day in bit-0, the day of the week (1-7)

inbits 1-3, and bit-7 is set for a | eap year.

7.6.16 @CNT SVG 42
This SVC passes a function 2 to a disk driver. It is comonly used for disk controller
initializing. See chapter 4 for additional infornation.

Registers Affected: AF [Note: DCO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:

C Logi cal drive nunber (0-7).

Exit:

A Error return code, if any.

4 Set if the operation was successful.
7.6.17 @DCRES SVGC- 43

This SVC passes a function 3 to a disk driver. It is comonly used for disk controller
resetting. See chapter 4 for additional information.

Registers Affected: AF [Note: DO5 saves BC 1Y; drivers should save any other
regi sters they use].

Entry:

C Logi cal drive nunber (0-7).

Exit:

A Error return code, if any.

4 Set if the operation was successful.

7-15

7.6.18 @pCSTAT SVG 40

This SVC passes a function 0 to a disk driver. It is commonly used for testing the status
of a logical drive. A disk driver should return with no error on function 0. Thus, if a
particular drive is disabled, the systemw || return an error-32 to the calling program
Chapter 4 has nore information.

Registers Affected: AF [Note: DO5 saves BC 1Y; drivers should save any other
regi sters they use].

Entry:

C Logi cal drive nunber (0-7).

Exit:

A Error return code, if any.

4 Set if the operation was successful.
7.6.19 @EBUG SVGC- 27

This SVCwill force the systemto enter the DEBUXI ng package.
Regi sters Affected: None except those changed by the user.

7.6.20 @PECHEX SVC- 96

This SVC perforns the conversion of a decimal string of digits <0-9> to their binary
value in a 16-bit field. OQverflowis not trapped. The conversion stops on the first digit
found not to be in the range <0-9>. The |inkage is:

Regi sters Affected: AF, BC H..

Entry:

H. => A pointer to your decimal string.

Exit:

BC Returns the resultant 16-bit binary val ue of "string".

H. Points to 1st non-decimal digit.
Z-flag is indetermnate

7.6.21 @ RRD SVGC- 87

This SVC will read a directory sector containing the directory entry for a specified
Drectory Entry Code (DEC). The sector will be witten to the systembuffer, SBUF$, and
the register pair HL. will point to the first byte of the directory entry specified by the
DEC Note that this is a nethod to recover the page address of the systems buffer by
keeping register-H after an @ RRD invocation. See the sections on HASH | NDEX TABLE and
D RECTCRY RECCRD FCRVAT for additional infornation.

Regi sters Affected: AF, H..

Entry:

B Drectory Entry Code of the file.

C Logi cal drive nunber (0-7).

Exit:

H. Points to the DEC s directory entry.
A Error return code, if any.

Z Set if no error is encountered.

7-16

7.6.22 @ RWR SVC- 88

This SVC will wite the system buffer, SBUFF$, back to the disk directory sector that
contains the directory entry of the DEC specified in the calling l|inkage. See the
sections on HASH | NDEX TABLE and D RECTCRY REQCRD FCRVAT for additional information.

Regi sters Affected: AF, H..

Entry:
B Drectory Entry Code of the file.
C Logi cal drive nunber (0-7).
Exit:
A Error return code, if any.
Z set if no error.
7.6.23 @ V16 SVC- 94

This SVC will perform a division of a 16-bit unsigned integer by an 8-bit unsigned
i nt eger.

Regi sters Affected: AF, H..

Entry:

HL Shoul d contai n the dividend val ue.

C Shoul d contai n the divisor val ue.

Exit:

HL Returns the resul tant val ue.

A Returns the remai nder val ue.
7.6.24 @l V8 SVC- 93

This SVC perforns an 8-bit unsigned integer divide.

Regi sters Affected: AF, E

Entry:

E Shoul d contai n the dividend val ue.

C Shoul d contai n the divisor val ue.

Exit:

A Returns the resul tant val ue.

E Returns the remai nder val ue.
7.6.25 @D R SVC- 34

This SMC will capture selected directory information for the |ogical drive referenced in
the SVC s invocation and either pass the infornmation to your designated buffer or display
formatted information on the *DO device. A function nunber is passed in register B to
control the desired output.

Regi sters Affected: AF.

D splay Fi | especs

Entry:
B 0; Function to display the directory of visible files to *DQ
C The | ogi cal drive nunber (0-7) of the selection.

7-17

Drectory to Buffer

Entry:
B 1; Function to stuff your buffer with directory infornation.
C The | ogi cal drive nunber (0-7) of the selection.

H. A pointer to your buffer. The data returned by @CDR is the first 16-bytes
of each directory record followed by the ERN The buffer will be terninated
by an X FF .

D splay F | especs Matchi ng EXT

Entry:

B 2; Function to display the directory of visible files to *DQ The display is
limted to files matching the given extension.

C The | ogi cal drive nunber (0-7) of the selection.

H. A pointer to a 3-character file extension. The use of a dollar sign in any

position represents a gl obal match.

Drectory Matching EXT to Buffer

Entry:

B 3; Function to stuff your buffer with directory information. The data is
limted to files matching the given extension.

C The | ogi cal drive nunber (0-7) of the selection.

H. A pointer to your buffer. This pointer is also interpreted to be a pointer

to a 3-character file extension. The use of a dollar sign in any position
represents a global match. Note that this function inplies that the start of
your buffer is stuffed with the file extension to be nat ched.

bt ai n Free Space

Entry:

B 4; Function to stuff your buffer with free space information. The
information passed will be D SK NAME and D SK DATE in positions 1-16; total
space on the disk (in K) in positions 17-18; and FREE SPACE available (in K
in positions 19-20.

C The | ogi cal drive nunber (0-7) of the selection.

H. A pointer to your buffer.

7.6.26 @pSP SVG- 02
This SVCwill output a byte to the video display devspec *DQ

Regi sters Affected: AF, DE

Entry:

C Byte to displ ay

Exit:

4 Set if no error was encountered, otherw se reset (i.e. N2).
A Contai ns the error code under an NZ conditi on.

7-18

7.6.27 @SPLY SVG 10

This SMCwll display a message line to the *DO device. The line nmust be termnated with
either an <ENTER> (X 0D) or an ETX (X 03'). If an ETX termnates the line, the cursor
will be positioned i mediately after the | ast character displayed.

Regi sters Affected: AF, DE

Entry:
H. points to the 1st byte of your nessage.
7.6.28 @ERRCOR SVC- 26

This SVCwill provide an entry to post an error message. @RRCR will normally terninate
to the @BORT SVC If bit 7 of the error register is SEI, the error message wll be
di splayed and return will be made to the calling program If bit 6 of the error register
is reset, the conplete error informati on shown below is displayed. If bit 6 is set, then
only the "Error nessage string" [see Chapter 8, the Appendix, Error Message D ctionary]
i s displayed.

Regi sters Affected: AF [Note: not applicable if @BCRT option].

Entry:
C Error nunber with bits 6 and 7 optional ly set.
DE ptional string buffer pointer used wth CFLAG opti on.

It is possible to have @RRCR return the message string associated with the error
by setting bit-7 of the CFLAGH (see SVG 101). This can be useful if you want to
control the positioning of the nessage. A so, in the case of conpilers and
interpreters, it can be useful to use this option as a neans of providing greater
flexibility to the application program

*** Error code = xx, Returns to X dddd'
<fil espec, devicespec, or open FCB/ DOB st at us>
Last SVC = nnn, Returned to Xrrrr'

7.6.29 @&XT SVGC- 22
This is the nornal SVC to performa programexit and return to DC5 Aternatively, if
your programmaintains the integrity of the stack pointer, then a sinple RET instruction
wll return to the system

Regi sters Affected: Not applicable.

Entry:
H. Mist be | oaded with the return code (0O = no error).
7.6.30 @EXT SVG- 79

This SVC will set up a default file extension in the FCB if the file specification
entered contai ns no ext ensi on.

Regi sters Affected: AF

Entry:

DE A pointer to the File Control Bl ock.

H. Pointer to the 3-character default extension which nust be stored in upper
case.

7-19

7.6.31 @LAGSS SVG 101

This SVCwill return a pointer to the base of the flags table. The pointer is returned in
register 1Y. The flag table is a table of 26 flags lettered A-Z Certain additional
systemvariables are indexed relative to this pointer. Ohce the pointer is obtained, each
flag may be referenced relative to |Y. For instance, if the SFLAGS is needed, use
"I'Y+' S-"A" to reference the storage address of the flag. The following presents the
flag assignnents available to the programrer:

Regi sters Affected: AF 1Y.

Exit:
Y Returns the pointer to the base of the flag table.

AFLAGSH

This "allocation" flag contains the starting cylinder nunber that is used by the
systemis file space allocation routine when searching for free space on disk
nedi a. The systemdefaults this value to cylinder 1.

CFLAGH

Bit O If set, then the systemw |l not permt the change of HG® via SVC-100.
This flag is reset by @XIT and @WD . This function is useful for
applications invoking system resources via @MWMDR while still wanting
control of the entire nenory region through H GH$.

Bit 1 If set, @WDR is executing. This flag is reset by @XT and @M\D. Note
that once an @MUDR invocation is perforned, the flag cannot be reset by the
systemuntil "exit" of the application has been made via @XI T or @WM\D .

Bit 2 If set, it indicates that the command interpreter in SYSl is requesting the
line input from the keyboard. This condition is inportant for keyboard
filters that may change the resident systemoverlay. If SYSl is resident and
overwitten when bit-2 is set, you will crash the D35 upon passing control
back to the keyboard driver unless SYS1 is restored.

Bit 3 If set, then the systemis requesting execution from either the "SET" or
"SYSTEM (DR VER=" commands. This bit should be tested by drivers or filters
upon installation to ensure that they are being installed by the proper
system command rat her than just by RUN or execution.

Bit 4 If set, then the @WDR SVC will only execute system LIB commands. Bear in
mnd that "RUN' will be invokable which could then be used to override the
limtation.

Bit 5 If set, the SYS&EN library command wi |l be inhibited. This may be useful to
inhibit application environments from altering the boot initialization
confi gurati on.

Bit 6 If set, then @RRCR will not display any error message. This can be used to
inhibit the posting of error nessages by prograns invoked from @WDR

Bit 7 If set, then @RRCR will pass the error nessage to the buffer pointed to by
register pair DE See @RR(R for nore data.

DFLAGH

Bit 0O Set to "1" if SPOCL is active

Bit 1 Set to "1" if TYPE AHEAD is to be active. Type-ahead can betoggl ed on/off
via this bit.

Bit 2 If set, it indicates VERFY (O\) has been set.
Bi t If set, it indicates that SYSTEM (SMXOIH) is active.
Bit 4 If set, then MenD sk is active.

w

7-20

Bit 5 If set, it indicates that FORMS i s acti ve.
Bit 6 If set, it indicates that KSMis acti ve.
Bit 7 Set if printer supports bl ock graphics for screen print.

EFLAGH

This flag byte is used to indicate the presence of an Extended Command I nter preter
(EA) programin the SYS13/SYS slot. A non-zero value indicates that the user's
EA be used to interpret the command line instead of the systems conmrand
interpreter. Oh entry to your EQ, bits 4-6 of this flag are inmaged in the
accunul ator and are available for immedi ate test.

| FLAGSH
This flag is used in international systens. Bit assignments are:

Bit O Set to indicate French.

Bit 1 Set to indicate Gernan.

Bit 2 Set to indicate Sw ss.

Bit 3 reserved

Bit 4 reserved

Bit 5 reserved

Bit 6 Special DW node on/off.

Bit 7 Set 7-bit ASAIl node on/off.

KFLAGH

Bit 0 Set to "1" if BREAK pressed (see KFLAG interfacing and the @KBRKC SVG 105).
Bit 1 Set to "1" if PAUSE pressed (see KFLAG interfacing).
Bit 2 Set to "1" if ENTER pressed (see KFLAG interfacing).
Bit 3 Reserved by DCB

Bit 4 Reserved by DCB

Bit 5 Set to "1" if in CAPS | ock node of the keyboard.

Bit 6 Reserved by DCB

Bit 7 Set to "1" if a character is in the type-ahead buffer.
LFLAGS

Bit O If set, FORVAT will not pronpt for step rate.

Bit 1 reserved

Bit 2 reserved

Bit 3 reserved

Bit 4 If set, FLAPPY/DCT will inhibit the 8" query.

Bit 5 If set, FCRVAT will not pronpt for nunber of sides.
Bit 6 Reserved for Interrupt Mbde 2 hardware.

Bit 7 Reserved for Interrupt Mbde 2 hardware.

MFLAGH

This flag is nmachine specific. It is used to contain an inage of a particular CPU
port. For instance, on the TRS-80 Mdel 4, this is an image of the MXIDCQUT port
(X EC).

7-21

NFLAGH

This "network™ flag is used for control in netwrk situations. The bits are
assi gned as foll ows:

Bit O If set, the "file-open"” bit will be witten to the directory when a file is
opened wi th update or higher access.

Bit 1 reserved
Bit 2 reserved
Bit 3 reserved
Bit 4 reserved
Bit 5 reserved
Bit 6 Set if the systemis task processor is in control. NOTE do not execute an H

instruction within any driver or filter routine if this bit is set.
Bit 7 - reserved

CFLAGH

This flag is nmachine specific. It is used to contain an inage of a particular CPU
port - generally dealing with menory managenent. For instance, on the TRS 80 Mdel
4, this is an inmage of the CPREG port (84).

PFLAGH

This flag is assigned to printer operations. Bits are as foll ows:

Bit O - reserved

Bit 1 - reserved

Bit 2 - reserved

Bit 3 - reserved

Bit 4 - reserved

Bit 5 - reserved

Bit 6 - reserved

Bit 7- Set to1if the SPO0er is in a paused state.
SFLAGH

Bit O This is the FORCE-TOREAD flag. If set prior to issuing an @PEN, then the
system will not check for matching LRL nor will the system set the "file
open bit" in the directory for the opened file. However, the file wll be
restricted to READ access (unless a lower access is detected during the
open. This bit will be automatically reset by @PEN

Bit 1 This bit will be set by @PEN if an EXEGonly file is opened and bit-2 of
SFLAGH is set. Under these conditions, @PEN will change the access granted
to READ so that @QAD can load the file. Thus, the application (for instance
BASIC) can load an EXEGonly file to be RIN while still detecting the EXEC
protection status.

Bit 2 Set this bit to enable the loading of an EXEGonly file. This bit works in
conjunction with bit-1.

Bit 3 Set to "1" if SYSTEM (FAST) has been establi shed.

Bit 4 Set to "1" to disable the BREAK key.

Bit 5 Set to"1" if DOis in effect executing Job Control Language.

Bit 6 Set to "1" to force extended error messages. This is only practical in a

debuggi ng envi r onrent .

7-22

Bit 7 Set to "1" if DEBUGis to be turned on after the execution of the program
just loaded for execution. The use is internal to the system If DEBUG is
active, the D05 will not enter DEBUG when running an EXEG only program but
wll maintain the DEBUG status via this bit.

TFLAGSH

This is the machine type flag. It's value indicates the conputer nodel running the
D5 Sone of the typical TRS- 80 values are: 2 = nodel 2; 4 = nodel 4; 5 = nodel
4P, 12 = nodel 12; 16 = nodel 16.

UFLAGH

This is a user flag. It is available for whatever purpose you wi sh to nmake of it.
It wll remain unused by the system however, the flag contents will be part of
any SYSGEN configuration file.

VFLAGSH

Bits 0-3 Are used in controlling the cursor blink rate.

Bit 4 If set, the clock will be displayed on the video screen.

Bit 5 This bit is used by the systemto toggl e the cursor state.

Bit 6 If set, the cursor is non-blinking; otherw se blinking.

Bit 7 Wsed by the systemto suppress blinking while in the *DO driver to inhibit
the blink task fromchangi ng state.

WFLAGSH

This is a machine dependent flag commonly used to store an inage of mnode-1
i nterrupt masking. For instance, on the TRS-80 Mdel 4, it stores an inage of the
WR NTMVASK regi ster (EO).

OTHER DATA

The other system infornation accessible relative to the flags pointer is as
fol | ows:

FLAGS-47 contains the rel ease nunber of the DOB (CBRLS$). For instance, OBRLSS$ is
X 10" for version/release 6.0.1 (see FLAGS+27 for the version).

FLAGS- 1 contains the overlay entry nunber of the systemoverlay currently resident
in the overlay region. The loworder four bits reference the overlay nunber (1-
13).

FLAGS+26 contains a one-byte pointer to the nenory page which contains the SVC
vector table (SVCTAB). This is useful to hook into system routines by indexing
into the proper SVCTAB position according to the SVC nunber. The SVCTAB is al ways
| ocated on a page boundary.

FLAGS+27 contains the version nunber of the DOS (CSVERS). For instance, OBVERS is
X 62" for version 6.2.Xx

FLAGS+28 through FLAGS+30 contain a junp vector for @ONFG See the Chapter 8, the
Appendi x, on @ONFG interfacing for details on this vector.

FLAGS+31 through FLAGS+33 contain a junp vector for @I TSK See Chapter 8, the
Appendi x, on @I TSK interfacing for details on this vector.

7-23

7.6.32 @NAME SVC- 80
This SVC will recover the file nane and extension fromthe directory for the referenced

directory code and drive. It is used by the systemto recover the filespec when closing a
file. Athough @NAME can be used for a "directory" function, @R or @AMIR are
better candidates for performng that function.

Regi sters Affected: AF.

Entry:

DE Buffer to receive file nane/ ext

B DEC of file desired

C drive nunber of drive containing the file

7.6.33 @SPEC SVC- 78
This SMC will fetch a file or device specification froman input buffer. Conversion of

| ower case to upper case w ll be nmade.
Regi sters Affected: AF, H..
Entry:

H. A pointer to the buffer containing file specification.
DE A pointer to the 32-byte File Control Bl ock.

Exit:

H. Points to the termnating character found.

A WI1 contain the termnating character.

4 Set if valid file specification found.
7.6.34 @ET SVC- 03
This SVC will fetch a byte from a logical device or a file. Note that if the DCB
references the *KI device, an NZ condition with error code of O (A=0) w Il indicate that

no character was avail abl e.

Regi sters Affected: AF

Entry:
DE A pointer to the DB or FCB for the device/file.
Exit:
A Byte fetched or error return code.
4 Set if byte was fetched w thout error.
7.6.35 @sTDCB SVC- 82
This SVC will locate the address of the Device Control Bl ock (DOB) associated with the

devi ce nane passed in the invocation.
Regi sters Affected: AF, H..
Entry:

DE 2-character device name (E has 1st char, D has 2nd char). Note: |f DE=O,
then a pointer to the first available DB w Il be returned.

Exit:
H Address of the Device Control Bl ock.
4 set on no error, else error 8 (device not avail).

7-24

7.6.36 @sTDCT SVGC- 81

This SVC will obtain a pointer to the Drive Control Table (DCT) associated with the
requested | ogical drive. See the section on DR VE CONTRCL TABLE in chapter 4 for detailed
i nformati on on the DCI.

Regi sters Affected: AF 1Y.

Entry:
C | ogi cal drive nunber (0-7).
Exit:
Iy the Drive Code Tabl e address.
7.6.37 @sTMD SVC- 83
This SVC will locate the entry address of a nodule resident in menory provided all

resi dent nmodul es use the established header protocol.
Regi sters Affected: AF, DE H..
Entry:

DE Pointer to the nmodul e nane termnated with an ETX (or any character in the
range (X 00'-X 1F).

Exit:

H. Returned entry address of the nodul e.

DE Pointer to address of first byte past the nodule nanme storage within the
nodul e header .

4 Set if the nmodule is found in nmenory.
7.6.38 @IDFMI SVGC- 52

This SMCis used to pass a function 12 (X0OC) to a disk driver. It is commonly used to
pass a "format drive" command to a hard disk controller. See chapter 4 for nore
i nformation.

Registers Affected: AF [Note: DO5 saves BC, 1Y; drivers should save registers any
ot her registers they use].

Entry:
C The | ogi cal drive nunber (0-7).
Exit:
A The return code if an error.
Z Set if no error.
7.6.39 @EX16 SVC 99

This SVCwill convert a 16-bit binary nunber to hex ASCI.

Regi sters Affected: AF, H..

Entry:

DE Contai ns the val ue to be converted.
H. A pointer to your 4 character buffer.
Exit:

HL Points to end of buffer + 1.

7-25

7.6.40 @EX8 SVC- 98
This SVCwill convert a 1-byte nunber to hex ASOI.

Regi sters Affected: AF, H..

Entry:

C Contai ns the value to convert.

H. A pointer to your 2-character buffer.
Exit:

H. WI1l point to end-of -buffer + 1.

7.6.41 @EXDEC SVG 97
This SVC converts a 16-bit binary nunber into decinal ASAI.

Regi sters Affected: AF, BC H..

Entry:
HL Contai ns the value to convert.

DE A pointer to your 5-character buffer.

Exit:
DE WI1l point to end-of -buffer + 1.

7.6.42 @ G$ SVGC- 100

This SVC will alter or return the current value of HCGHE LOM. Note that neither can be
altered if bit-0 of the CFLAGh is set. HGH is a word containi ng the hi ghest RAM addr ess
usable by the system User nodules that need be protected from being overwitten are
placed in high nmenory. The nodule's last address should occupy the current H G and
HGH is then lowered to correspond to the nenory |location just prior to the nodul e. LOM
needs to be set by those prograns using @WDR that want to protect nenory starting from
their |owest address (LOM defaults to X 2FFF).

Regi sters Affected: AF [HL if originally set to 0O].

Entry:
B 0, SVCdeals with HG%$
B 1, SVC deals with LOM
HL If a non-zero value is contained in H, then H CGH} LOM is changed the that
value. If HL contains a zero value, then the current value of HG/LOM is
r et ur ned.
7.6.43 @QNT SVC- 58

INT will open an existing file. If the file is not found, it will be created according
to the file specification.

Regi sters Affected: AF

Entry:

H. The 256-byte disk I/Obuffer to be used during 1/Q

DE File GControl Bl ock containing the file specification.

B Logi cal Record Length to be used while the file is open.

7-26

Exit:

A Error return code

CF Set if a newfile was created

4 Set if no error is encountered during the INT.
7.6.44 @PL SVC 00

This SVC will reboot the system It functions the sanme as pressing the hardware RESET
button. A usabl e booting systemdi sk nust be available in physical drive O.

Regi sters Affected: Not applicabl e

7.6.45 @XBD SVC- 08

This SVC will scan the *KI device and return the fetched character, if any character is
available. Note that it is possible to generate an end-of-file (ECQF) error from the
physical keyboard (NZ with A=X1C). Consult the DO5 manual for your particular
installation to ascertain what key entry establishes the ECF indication. Ch the TRS 80
Model 4, for instance, the entry <OONTROL><SH FT><@ gener ates the ECF.

Regi sters Affected: AF, DE

Exit:

A Contai ns the val ue of the key depressed or error return code.

4 Set to indicate register-A contains the entered key code. If reset, then
either no key was depressed or an error occurred. Register-A wll contain a
zero (X 00') wunder no-key, no-error. Register-A wll contain a non-zero
error code if an error was detected during the character "get" (perhaps a
rout e?).

7.6.46 @KEY SVG 01

This SVC will continuously scan the *KI device until a character is available. It wll
not return until a character is available.

Regi sters Affected: AF, DE

Exit:
A Contai ns the character entered or err or code.
Z Set if no error is encountered.

7.6.47 @XEYIN SVC- 09

This SVC will accept a line of input until termnated by either an <ENTER> or <BREAK>.
During the input, the routine will display the entries. Backspace, tab, and line delete
are supported. KEYIN exits with the cursor in whatever state it was in at the tinme KEYIN
was entered.

Regi sters Affected: AF, BC DE

Entry:

H. Pointer to user line buffer of |length = B+l.

B Maxi mum nunber of characters to input.

C Shoul d contain a zero (possible enhancement of KEYIN will use register Cto
contain a fill character).

Exit:

B Contai ns the actual nunber of characters input.

CF Set if <BREAK> termnated the input.

Z Set if no error was encount ered.

7-27

7.6.48 @XLTSK SVGC- 32

This SVCwill renove the task assignment fromthe task table and return to the foreground
application that was interrupted when called by an executing task driver. See Chapter 8,
the Appendi x, section on TASK PROCESSI NG for detail ed i nformation.

Regi sters Affected: Not applicable..

7.6.49 @QQAD SVC- 76
This SVCwill load a programfile (a file in | oad nodul e format).

Registers Affected: AF, B, H..

Entry:
DE FCB containing the filespec of the file to | oad.
Exit:
H. WI1l contain the programis transfer address if no error is detected during
the load; otherwise it will contain the error return code.
4 Set if the |oad was successful.
7.6.50 @OCC SVGC- 63

This SVCwill calculate the current |ogical record nunber for the file referenced.

Regi sters Affected: AF, BC

Entry:
DE A pointer to the FCB for the file to check.
Exit:
BC Returns the current |ogical record nunber.
A Error return code if an error is encountered.
4 Set if the operation was successful.

7.6.51 @QOCF SVC- 64

This SMC will calculate the |ogical record nunber where an end-of-file (ECF) error would
be encountered for the referenced file.

Regi sters Affected: AF, BC

Entry:
DE A pointer to the FCB for the file to check.
Exit:
BC Returns the ECF | ogi cal record nunber.
A Error return code if an error is encountered.
4 Set if the operation was successful.
7.6.52 @QOCGER SVG 11
This SVC will issue a log message to the Job Log device (*JL). The "message" is any

character string termnating with an <ENTER> (X 0D). The current time string wll be
autonmatically prefixed to the message.

Regi sters Affected: AF, DE

Entry:
H. A pointer to the nessage line to |og.

7-28

Exit:

A Error return code if an error is encountered.
4 Set if the operation was successful.
7.6.53 @O30r SVG 12

This SVC will display and log a nessage. It wll performthe same function as @SPLY
fol l owed by @OFER

Regi sters Affected: AF, DE

Entry:
HL A pointer to the nessage line to |og.
Exit:
A Error return code if an error is encountered.
Z Set if the operation was successful.
7.6.54 @BG SVG 13

This SVCis a nessage |line handl er used to output a nmessage string to any device.

Regi sters Affected: AF.

Entry:
DE A pointer to a Device or File Control Block to receive output.
HL A pointer to the nessage |ine.

7.6.55 @WL16 SVG 91

This SVC will performan unsigned integer nultiplication of a 16-bit multiplicand by an
8-bit multiplier. The resultant value is stored in a 3-byte register field.

Regi sters Affected: AF, DE

Entry:

HL Contains the multiplicand val ue.

C Contains the multiplier val ue.

Exit:

HL Returns the two high order bytes of resultant val ue.

A Returns the | ow order byte of the resultant val ue.
7.6.56 @1L8 SVG 90

This SVC will performan 8-bit by 8-bit unsigned integer multiplication. S nce overflow
out of the 8-bit register is not returned as an error, the routine should only be used on
smal | integer val ues.

Regi sters Affected: AF, DE

Entry:

C Contains the multiplicand val ue.
E Contains the mul tiplier val ue.
Exit:

A Returns the resul tant val ue.

7-29

7.6.57 @PEN SVG 59
This SMCwill open an existing file or device. The Logical Record Length (LRL) passed in
register B should match the LR. stored in the directory. If it does not, an "LRL open

fault” error will be returned; however, the file will still be opened. If the file is
already in an open state, the file's directory record will indicate the condition. In
this case, the file will still be opened; however, only READ access (or |ess dependi ng on

the access pernitted by the password) will be granted. A "File already open" error wll
al so be returned.

Regi sters Affected: AF

Entry:
HL A pointer to your buffer for disk 1/Q
DE A pointer to the File or Device Control Bl ock containing the filespec or
devi cespec.
B Shoul d contain the Logi cal Record Length for the open file.
Exit:
A Error return code
4 Set if open was successful
7.6.58 @ARAM SVC- 17

This SVC can be used to parse an optional command line paraneter string. Its prinary
function is to parse comrand paraneters contained in a coomand line totally enclosed
w thin parentheses. The parameter formats acceptable for the command line entries are as
fol | ows:

PARVEX hhhh' hexadeci nal entry

PARVEddddd deci nal entry

PARVE" st ri ng" al phanureric entry

PARVECN switch entry indicating TRUE
PARVEYES switch entry indicating TRUE
PARMEY swi t ch entry indicating TRUE
PARMVECFF switch entry indicating FALSE
PARVENO switch entry indicating FALSE
PARVEN switch entry indicating FALSE

The user-entered paraneters that are to be accepted by your application are contained in
a paraneter table (PRVIBL$). This table stores the paranmeter nanmes and a pointer to
i ndi cate where the user response is to be placed. Two forns of the PRVIBLS are support ed.

The first formuses a fixed width table with a naxi numnane | ength of six characters. The
PRMIBL$ is coded as follows. A 6-character NAME left justified and filled with blanks
followed by a 2-byte address VECTCR which points to the |ocation which will receive the
parsed val ues. The 2-byte nenory address denoted by the address VECTCR field of your
table receives the value of PARMif PARMis non-string. If a string is entered, the 2-
byte nenory address receives the address of the first byte of "string”. NAME and VECTCR
may be repeated for as nmany paraneters as are desired. A byte of X 00" nmust be placed at
the end of the table to indicate its endi ng point.

The second PRMIBL$S format permts a greater degree of flexibility in paraneter handling.
It also provides feedback as to each paraneter entered by the user. Its format begins
wth a byte of X80 to indicate the enhanced table. Each parameter is then identified
with four fields. These fields are as foll ows:

7-30

CONTRCL

Bit 7 Set if nuneric values are to be accept ed.
Bit 6 Set if switch values are to be accepted.
Bit 5 Set if string values are to be accepted.
Bit 4 Set if the first character of NAMVE is accepted as an abbreviation for
t he paraneter.
Bits 0-3 Contain the length of the NAME field (1-15).
NAME

Contains the paraneter nane used to reference the paraneter on the command |ine.
This field nust be in upper case.

RESPONSE

Bits 7-5 Are set by @ARAM as appropriate to the type of entry nade by the
user.

Bits 0-4 (ontain the length of the string entry if a string was entered. A
length of O is indicative of either a NULL string or a string |onger
than 31 characters. This can be differentiated by testing the first
character of the string. If a double quote ("), then a NJLL string
was entered. Any other character indicates a string longer than 31
characters which will be termnated by a (").

VECTCR

This word is a pointer to the nenory location that will receive the parsed val ue.
It isfilled in the sane manner as that identified in the first fornat.

Note: Caution is to be observed in the proper use of the enhanced node when you
have sonething like the follow ng: ONand ONLY in the table; if ONislisted first,
then QN Ok, O\xx, etc will match. This is because the parsing stops as soon as
the length of the table entry has been reached. Aternatives are to add an
appendi ng space to the table entry, or order the table AG\LY fol |l owed by ON

See Chapter 8, the Appendix, USING THE SYSTEM PARAMETER SCANNER, for detailed
informati on. The @ARAM protocol is as foll ows:

Regi sters Affected: AF, BC H..

Entry:

DE A pointer to the beginning of your paraneter table.

HL A pointer to the command |ine to parse.

Exit:

H. Returns pointing to the termnating character.

4 Set if either no paraneters found or valid paraneters.

NZ If a bad paraneter was found.

A Effective with 6.2.0, contains error code 44 on NZ return.
7.6.59 @PAUSE SVC 16

This SVC will suspend program execution and go into a "wait" state for a period of time
determned by your count. The delay is approxi mately 15 nicroseconds per count regardl ess
of the system FAST/ SLONopti on.

7-31

Regi sters Affected: AF, BC

Entry:
BC del ay count

7.6.60 @ECF SVG 65

This SMC wll position an open file to the end-of-file position. If the SVC is
successful, an error 28 - "End of file encountered" will be returned.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB of the file to position.
Exit:
A WIIl return the error return code.
7.6.61 @OSN SVC- 66

This SVCwill position a file to a logical record. This will be useful for positioning to
records of a random access file. Wen the @CSN routine is used, Bit 6 of FOB+1 is
automatically set to ensure that the ECF will be updated when the file is closed only if
the NRN exceeds the current ERN This action wll guard against any inadvertant
deal | ocati on of space in the randomaccess file. Afile can be extended by positioning to
its ECF (see @ECF) then witing to it.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file to position.
BC Contains the logical record nunber for the positioning.
Exit:
A WIl contain an error return code if an error was encountered.
4 Set if the operation was successful
7.6.62 @R NT SVG 14

This SVCwill output a nessage string to the printer device, *PR The nessage string nust
conformto the syntax specified under @SPLY.

Regi sters Affected: AF, DE

Entry:
H. A pointer to the nessage to be output.
Exit:
A WI|l contain an error code if the SVC was unsuccessful .
Z Set if the SVC was successful .
7.6.63 @RT SVC 06

This SVC will output a byte to the printer device, *PR Al character codes are passed
unaltered to the device unless the forns filter is filtering the device. If the *PR
device is not available, the SVCwll time out after approximately 10 seconds and return
a "Device not available" error.

Regi sters Affected: AF, DE

7-32

Entry:

C Contai ns the character to print.
Exit:
A WI|l contain the error code if the SVC was unsuccessful .
Z Set if the SVC was successf ul .
7.6.64 @UT SVC- 04

This SVCwll output a byte to a logical device or a file.

Regi sters Affected: AF

Entry:
DE A pointer to the Device or File Control Bl ock of the output device.
C Contai ns the byte to output.
Exit:
A WI|l contain an error return code if the SVC was unsuccessful .
Z Set if the SVC was successful .
7.6.65 @RAMDI R SVC- 35

This SVC provides abbreviated information fromthe directories of visible files as well
as free space information for a disk. It wll provide infornation simlar to the RAMJOR
vector on earlier Mdel Il TRSDGS 1.3. Register Cis used to pass a function code to the
SVC. Linkage is as foll ows:

Total Drectory

Regi sters Affected: AF

Entry:

C 0; htain directory records of all visible files.

B Shoul d contain the logical drive (0-7) for the disk.

H. A pointer to your buffer which will be passed the data.
Exit:

A Returns an error code if the operation encountered an error.
Z Set if the SVC was successful .

File Directory

Regi sters Affected: AF

Entry:

C 1-254; (pbtain the directory record for the file whose Drectory Entry Code
(DEQ) is equal to register C+l.

B Shoul d contain the logical drive (0-7) for the disk.

H. A pointer to your buffer which will be passed the data.

Exit:

A Returns an error code if the operation encountered an error.

Z Set if the SVC was successful .

The infornati on passed to your buffer wll consist of 22-byte records. The buffer
is termnated by a plus sign ("+"). Each record is fielded as foll ows:

7-33

0-14 F LENAME EXT:D - left justified and buffered w th spaces
15 Protection | evel (0-6)

16 End of File (ECF) offset byte

17 Logi cal Record Length (O inplies 256)

18-19 Endi ng Record Nunber (ERN) of the file

20-21 Space allocated for the file (in K)

Free Space
The SVC linkage to acconplish a retrieval of free space is as foll ows:

Regi sters Affected: AF

Entry:

C 255; (otain free space information.

B Shoul d contain the logical drive (0-7) for the disk.

H. A pointer to your buffer which will be passed the data.
Exit:

A Returns an error code if the operation encountered an error.
Z Set if the SVC was successful .

The total space allocated to files (in K) is returned in the first two bytes of
the buffer while the total space left available (in K) is stored in the third and
fourth bytes of the buffer.

7.6.66 @RDHDR SVC- 48

This SVC passes a function 8 to a disk driver. It is commonly used for reading sector
header information from the next encountered sector ID field of a floppy disk. See
chapter 4 for additional information.

Registers Affected: AF [Note: DO5 saves BC 1Y; drivers should save any other
regi sters they use].

Entry:
C Logi cal drive nunber (0-7).
H. A pointer to the buffer which will receive the data transfer.
Exit:
A Contains an error return code, if any.
4 Set if the operation was successful.
7.6.67 @RDSEC SVGC- 49

This SVC passes a function 9 to a disk driver. This is used to transfer a sector of data
fromthe disk drive to your buffer. See chapter 4 for additional information.

Registers Affected: AF [Note: DCO5 saves BC 1Y; drivers should save any other
regi sters they use].

Entry:

H. A pointer to the buffer to receive the sector of data.
D Contai ns the logical cylinder nunber to read (0-255).
E Contains the | ogical sector nunber to read (0-255).

C Contai ns the the |ogical drive nunber.

7-34

Exit:

A Passes the error return code if an error i s encount ered.
Z Set if no error is encountered.
7.6.68 @RDSSC SVC- 85

This SVC will read the directory system sector identified by the calling |inkage. The
cylinder nunber containing the directory that is loaded into register Dis recovered from
the Drive Control Table (DCT). The DCT for the each drive is obtained via the @IDCT SVC

Regi sters Affected: AF

Entry:
H. A pointer to the buffer to receive the sector of system data.
D Contains the logical cylinder nunber to read (0-255).
E Contai ns the | ogical sector nunber to read (0-255).
C Contai ns the the | ogical drive nunber.
Exit:
A Passes the error return code if an error is encountered.
Z Set if no error is encountered.
7.6.69 @DTRK SVG 51

This SVC passes a function 11 to a disk driver. It is commonly used for reading an entire
track of a floppy disk where permtted by the controller. See chapter 4 for additional
i nformati on.

Registers Affected: AF [Note: DCO5 saves BC 1Y; drivers should save any other
regi sters they use].

Entry:
C Logi cal drive nunber (0-7).
H. A pointer to the buffer which will receive the data transfer.
Exit:
A Contains an error return code, if any.
4 Set if the operation was successful.
7.6.70 @READ SVGC- 67

This SVC will read a logical record froman open file. If the LR. defined at open tinme
was 256 (0), then the next sequential sector identified by the Next Record Nunber (NRY)
contained in the File Control Block (FCB) will be transferred to the buffer established
at open tine. For Logical Record Lengths (LR.s) between 1 and 255, the next | ogical
record will be placed into the user record buffer, UREC identified in the @EAD SVC. The
3-byte NRN is updated after the read operation so as to prepare for the next sequenti al
read operation.

Regi sters Affected: AF

DE A pointer to the FCB for the file to read.
H. A pointer to the UREC (needed if LRL <> 0).

Exit:
A WI|l contain an error return code if an error was encount er ed.
4 Set if the operation was successful.

7-35

7.6.71 @EMV SVG 57

This SVC will renove a file. The FCB nust be in an open condition prepared by @PEN or
@NT. The file's directory will be updated by resetting the activity bit (bit-4 of
D R+0), the corresponding Drectory Entry Code (DEC) in the Hash Index Table (HT) will
be set to zero, and the space occupied by the file will be deallocated fromthe G anul e
A location Table (GAT). The 32-byte FCB will be set to zeroes upon successful commpl etion
of the file's renoval. If the control block contained data appropriate to an opened
device, the @GEMOVE SVC will treat the request as if it were an @LCBE request. Devices
can only be renoved via the RESET |ibrary command.

Regi sters Affected: AF.

Entry:
DE A pointer to the open File GControl Bl ock (FCB) of the file.
Exit:
A WIIl contain an error code if an error is encountered.
Z Set if no error is detected.
7.6.72 @RENAM SVC- 56

This SVC can be used to change the filenane or extension fields of a file stored on di sk.
The access protection | evel nmust permt renamng for the operation to be successful.

Regi sters Affected: AF.
Entry:

DE A pointer to the File Control Block (FCB) containing the filespec of the
file to be renaned.

H. A pointer to the FCB containing the new fil enane/ ext ensi on.
Exit:
A WI|l contain an error code if an error is encountered.
Z Set if no error is detected.
7.6.73 @REW SVC- 68

This SV\Cwll rewind a file to its beginning and reset the 3-byte NRN pointer to 0. The
next record that will be transferred for 1/O with a @GREAD/ @R TE request will be the
first record of the file.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file that you want to rew nd.
Exit:
A WIIl contain an error return code if an error was encount er ed.
4 Set if the operation was successful.

7.6.74 @RMISK SVC 30

This SVC will renove an interrupt level task from the Task Control Bl ock Vector Table
(TCBVT). See Chapter 8, Appendi x, on TASK PROCESSCR for detailed information on the use
of this SVC

Regi sters Affected: AF, DE H..

Entry:
C Contai ns the task assignment slot (0-11) to renove.

7-36

7.6.75 @RPTSK SVG 31

This SVC nust be invoked only from an executing task. It wll exit the task process
currently executing and replace the task's vector address in the Task Control Bl ock
Vector Table (TCBVT) with the address followng the SVC instruction. Return is nade to
the foreground application that was interrupted. See the TASK PROCESSCR section in
Chapter 8, the Appendix, for detailed infornation on the use of this SVC

Regi sters Affected: Not applicable..

7.6.76 @RREADSVC 69

This SMCwll cause a reread of the current sector providing the file was opened with an
LRL between 1 and 255 or the file was accessed via character 1/O (@ET/@UTl). Its nost
probabl e use would be in applications that reuse the disk I/O buffer for nultiple files
and want to reload the buffer with the proper file sector.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file to reread.
Exit:
A WI|l contain an error return code if an error was encount er ed.
4 Set if the operation was successful.
7.6.77 @RSLCT SVC 47

The SVCis used to pass a function code 7 to a disk driver. This function will performa
test of the selected drive to see if it is in a busy state (i.e. if the disk controller
is still executing a command). If busy, the drive will be re-selected until it is no
| onger busy. See chapter 4 for additional infornation.

Registers Affected: AF [Note: DO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:
C Shoul d contain the | ogical drive nunber.
7.6.78 @RSTOR SVG 44

This SVC will restore a disk drive to cylinder 0O by passing a function 4 to a disk
driver. See chapter 4 for additional infornation.

Registers Affected: AF [Note: DCO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:
C Logi cal drive nunber (0-7).
Exit:
A Contains an error return code, if any.
4 Set if the operation was successful.
7.6.79 @UN SVG 77
This SVC will load and execute a program file. Your FCB should not be located in the

nmenory region that will be loaded with the file you want to execute.

Regi sters Affected: AF, BC[Note: H. alterted on an error].

7-37

Entry:
DE A pointer to the FCB contai ning the programs fil espec.

Exit:

BC Returns a pointer to the start of the systemcommand buffer.

HL Contains the error return code if an error was encount er ed.
7.6.80 GRWRIT SVCG 70

This SVCwill rewite the current sector followng a wite operation. The @W TE function
advances the Next Record Nunber (NRN\) after the sector is witten. GRMRT w Il decrenent
the NRN and wite the di sk buffer again.

Regi sters Affected: AF.

Entry:
DE A pointer to the FCB for the file sector to rewite.
Exit:
A Contains an error return code if an error was encount ered.
4 Set if the operation was successful.
7.6.81 @EEK SVC 46

This SMC will pass a function code 6 to a disk driver. It is used to issue a controller
SEEK command. Disk controllers optionally verify only the track address, therefore it is
not necessary to pass a sector nunber to @EEK See chapter 4 for additional information.

Registers Affected: AF [Note: DCO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:

C Contai ns the |l ogical drive nunber.

D Contai ns the | ogical cylinder requested.
7.6.82 @BEEKSC SVG- 71

This SVCis used to seek a specified file record prior to attenpting to read or wite the
record. The record identified for the seek operation will be that determned by the Next
Record Nunber (NRN) identified in the File Control Block (FOB). The SEEK operation nay
require that the current file buffer be witten back to disk if it contains updated
information and the desired record is located in a different disk sector. If an error
occurs in this operation, the error code will be returned. The return code condition will
never reflect an error for the actual SEEK itself. @EEKSC serves a useful purpose only
when asynchronous [/Ois inplenented permtting disk seeking external to CPU control. On
the TRS-80 Mbdel 4, it is unnecessary.

Regi sters Affected: AF

Entry:
DE A pointer to the File Control Bl ock of the file.
Exit:
A Contains an error code if an error is encountered i n witing.
4 Set will indicate that the SEEK operation "conpl eted".
7.6.83 @K P SVGC 72

This SVC will cause a skip past the next logical record. The SKIP operation nay require
that the current file buffer be witten back to disk if it contains updated infornation
and the desired record is located in a different disk sector. If any error is encountered

7-38

in this operation, an error will be returned. The Next Record Nunmber (NRN) contained in
the FCB wi Il be changed accordingly.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file to skip.
Exit:
A WI|l contain an error return code if an error was encount er ed.
4 Set if the operation was successful.
7.6.84 @LCT SVC- 41

This SVC will pass a function code 1 to a disk driver. See chapter 4 for additional
information. The function will select a drive. The appropriate time delay specified in
your configuration (SYSTEM (DELAY=Y/N)) should be undertaken if the drive selection
requires it.

Registers Affected: AF [Note: DO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:
C Contains the logical drive nunber (0-7).
Exit:
A WI|l contain an error return code if an error was encount er ed.
4 Set if the operation was successful.
7.6.85 @BOUND SVCG 104
This SVCwill interface to the sound generator if one is provided with the conputer. Note

that the maskable interrupts are disabled during the duration of the tone generation. The
routine should function the sane regardl ess of FAST/SLON Al regs except the accumul ator
are left unchanged. The Z-flag is always set on exit. For those generators capabl e of
mul tiple sounds, the linkage is as foll ows:

Regi sters Affected: AF

Entry:
B Contai ns a function code packed as foll ows:

Bits 0-2 tone selection (0-7) with O=highest & 7=l owest.

Bits 3-7 Contain the tone duration (0-31) wth O=short, 31=long. Short
approx 3/ 32 sec, long approx 3 sec.

7.6.86 @TEPI SVG 45
This SVC passes a function 5 to a disk driver. It is commonly used for specifying a step-
incontroller command. See chapter 4 for nore information.

Registers Affected: AF [Note: DC5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:
C Logi cal drive nunber (0-7).

7-39

Exit:

A Error return code, if any.
4 Set if the operation was successful.
7.6.87 @l M SVG 19

This SVCwill return the tine of day in display format (HHMMSS). It also will recover a
pointer to the binary time storage which nay be useful for those inplenenting hardware
cl ocks.

Regi sters Affected: AF, BC DE

Entry:
H. A pointer to the 8-character buffer to receive the tine string.

Exit:

DE Returns a pointer to the binary tine storage, TIMES. The 3-byte region
contains seconds, ninutes, and hours. TIME$-1 stores the 30 Hertz rate
systemtimer.

7.6.88 @DCTL SVG 15
This SVC perforns various video control functions depending on the function code passed

inregister B. It is very useful for handling direct video access. The functions are as
fol | ows:

VI DEO " PEEK"

Regi sters Affected: AF, BC DE

Entry:

B 1; Gets the character at the position identified by H.

H. Contains the row (0-23) in register H and colum (0-79) in L.
Exit:

A WIIl be returned with the character at "H.".

4 Set if the operation was successful.

VI DEO " PCKE'

Regi sters Affected: AF, BC DE

Entry:

B 2; Puts the character at the position identified by H.

H. Contains the row (0-23) in register H and colum (0-79) in L.
C Contai ns the character to put at "H.".

Exit:

4 Set if the operation was successful.

SET CURSCR PCsl TI ON
Regi sters Affected: AF, B, DE

Entry:
B 3; Moves the cursor to the position identified by H..

7-40

H. Contains the row (0-23) in register H and colum (0-79) in L.

Exit:
A WI|l contain the error code if an error was encount er ed.
4 Set if the operation was successful.

CBTAI N OURSCR PGSl TI ON

Registers Affected: AF, B, H..

Entry:

B 4; (pbtains the current cursor position by row and col um.
Exit:

H. Contains the row (0-23) in register H and colum (0-79) in L.
A WI1l contain the error code if an error was encount er ed.

BUFFER TO M DEO

Regi sters Affected: AF, BC D H..

Entry:

B 5; Mwves a BLOXK of RAMto the vi deo RAM

H. A pointer to the user's RAM BLOK

Exit:

A WI|l contain the error code if an error was encount er ed.
4 Set if the operation was successful.

BLOX is 1920 bytes for 6.2, 2048 bytes for 6.0 and 6.1
VI DEO TO BUFFER

Regi sters Affected: AF, BC D H..

Entry:

B 6; Moves the video RAMimage to a RAM BLOK

H. A pointer to the user's RAM BLOK

Exit:

A WI1l contain the error code if an error was encount er ed.
4 Set if the operation was successful.

BLOX is 1920 bytes for 6.2, 2048 bytes for 6.0 and 6.1
SCROLL PROTECT

Regi sters Affected: AF, B.

Entry:
B 7, Inhibit scrolling of lines at the top of the video screen.
C Contai ns the nunber of lines to protect (0-7).

7-41

CQURSCR GHARACTER

Regi sters Affected: AF, B.

Entry:

B 8; Change the cursor character.

C Cont ai ns the new cursor character (or code val ue).

Exit:

A WI1l be returned with the current cursor value (for 6.0.1+).
4 Set if the operation was successful.

VI DEO LI NE TRANSFER

Regi sters Affected: AF, BC D H..

Entry:
B 9; Invoke |line transfer
C transfer direction; O = buffer to video, 1 = video to buffer.
H video rowto transfer (0-23).
DE A pointer to the user's 80-character buffer.
Exit:
A WI|l contain the error code if an error was encount er ed.
4 Set if the operation was successful.
7.6.89 @FER SVCG 73

This SMCwll performa @W TE operation foll owed by a test read of the sector (assuni ng
that the WRTE required physical 1/OQ to verify that it will be readable. The test read
w ll not cause data to be transferred to the file buffer.

Regi sters Affected: AF.

Entry:
DE A pointer to the FCB for the file to verify.
H. A pointer to the user record buffer (UREC) containing the |ogical record

(where the LRL is <> 256).

Exit:
A WIIl contain an error return code if an error was encount er ed.
4 Set if the operation was successful.
7.6.90 @RSEC SVG 50
This SVC will pass a function 10 to a disk driver. The function should verify the

readability of a sector without transferring any data fromthe disk to the buffer. See
chapter 4 for additional information.

Registers Affected: AF [Note: DCO5 saves BC 1Y; drivers should save any other
regi sters they use].

Entry:

C Contai ns the |l ogical drive nunber.

D Contain the cylinder nunber to verify.
E Contai ns the sector nunber to verify.

7-42

Exit:

A WI|l contain an error return code if an error was encount er ed.
4 set if the operation was successful.
7.6.91 @ECF SVC- 74

This SVCwill force the systemto update the directory entry with the current end-of-file
information. The file's FCB will remain in an open state.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file to WECF.
Exit:
A WI|l contain an error return code if an error was encount er ed.
4 Set if the operation was successful.
7.6.92 @WHERE SVC 07

This SVC can be invoked to determne the address of the calling routine. It can be useful
for snmall routines that are to be made run-tine rel ocat abl e.

Regi sters Affected: AF, H..

Exit:
H. Returns the nenory address foll owing the SVC instruction.
7.6.93 @R TE SVG 75

This SVC will cause a wite to the next record identified in the FCB. If the file's
Logical Record Length (LR.) identified in the FOB is less than 256, then the | ogical
record in the user buffer will be transferred to the file. If LR.is equal to 256, a full
sector 1/Owll be made using the disk I/Obuffer identified at file open tine.

Regi sters Affected: AF

Entry:
DE A pointer to the FCB for the file to wite.
H. A pointer to the user record buffer (UREC) containing the |ogical record

(where the LRL is <> 256).

Exit:
A WI|l contain an error return code if an error was encount er ed.
4 Set if the operation was successful.

7.6.94 @RSEC SVC- 53

This SVC will pass a function code 13 to a disk driver. It is used to wite a physical
sector of data to the disk. See chapter 4 for additional infornation.

Registers Affected: AF [Note: DC5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:

C Contai ns the |l ogical drive nunber.

D Cont ai ns the nunber of the cylinder to wite.

E Contai ns the nunber of the sector to wite.

H. A pointer to the buffer containing the sector of data.

7-43

Exit:

A WI|l contain the error code if an error was encount er ed.
4 Set if the operation was successful.
7.6.95 @\RSSC SVC- 54

This SVMC will pass a function code 14 to a disk driver. It is used to wite a system
sector (used in the directory cylinder). Were the disk controller supports the |BM Data
Address Mark convention, the controller command shoul d denote the "del eted data mark", or
X F8 inlieu of the standard data nark (X FB'). This distinct nmark is used in the @GRDSEC
command to detect the presence of a system (directory) sector. Qher than this Data

Address Mark variation, @GWRSSC is the same as @GWSEC; however, the DOS will use @VWRSSC
for all wites to the directory cylinder. See chapter 4 for additional information.

Registers Affected: AF [Note: DCO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:
C Contai ns the |l ogical drive nunber.
D Cont ai ns the nunber of the cylinder to wite.
E Contai ns the nunber of the sector to wite.
H. A pointer to the buffer containing the sector of data.
Exit:
A WI1l contain the error code if an error was encount er ed.
4 Set if the operation was successful.
7.6.96 @RTRK SVG 55

This SMC will pass a function code 15 to a disk driver. It is used to fornat a physi cal

track on a disk drive. Wiere the data pattern is under software control (as is the case
for floppy disk drives), the data format nust conform to that identified in your
controller's reference manual. Hard drives that are formatted by track may use this SVC
to control the track to track formatting. If the target drive is a floppy disk, then it

is necessary to precede the @WIRK SVC with a drive select via SVC @LCT. See chapter 4
for additional infornation.

Registers Affected: AF [Note: DO5 saves BC 1Y, drivers should save any other
regi sters they use].

Entry:

C Contai ns the |l ogical drive nunber.

H. Contains a pointer to the buffer containing the format data
D Cont ai ns the nunber of the cylinder to wite.

Exit:

A WIl contain the error code if an error was encount ered.

4 Set if the operation was successful.

7-44

8. APPENDI X
8.1 BOOT I NI TI ALI ZATI ON | CNFG | NTERFACI NG

In order to bring up the "DC5 Ready" message when first powering up your conputer, all
that you need do is place a SYSTEM diskette into the disk drive physically assigned to
the zero slot and depress a RESET button. In a few short nonents, the ready pronpt
appears on the display screen. Although, to the casual observer, not rmuch appears to have
taken place, the nachine has executed many "behi nd-the-scenes" procedures in order to
nake the operating system available for your comrands. The appendi x section on SYSTEM
D SK BOOTI NG covers the individual steps undertaken. Here we discuss one of the final
steps - the execution of an initialization configuration routine.

Certain items of hardware require an initialization process before they can be used. For
instance, the RS-232 hardware needs to have parameters such as baud rate, word |ength,
and nunber of stop bits initialized before it can be used. This initialization process
could be a software routine which transfers the required parameters to the UART and Baud
Rate CGenerator. Certain hard disk controllers (the XEBEC controller, for instance) nay
also need to be initialized before the attached disk drive can be used. This
initialization process may be inplenented as a program executing under the AUTO conmand
or it my be a small routine that is part of the disk driver. If the latter, it would be
useful to have it execute prior to the "DOS Ready" nessage. You nay also develop a
conmpl ex systemfunction that takes over one or nore SuperMVisor Call functions. S nce such
a function could reside in nmemory as part of a configuration, it would be useful to
have it automatically hook into the SVC table. Again, if the interfacing routine were
part of the function code in nenmory and the system provided a nethod to execute such a
routine, it would alleviate the probl emof executing the hook.

After the system booting process |oads a configuration file, it CALLs a vector, called
the @CNFG vector. The contents of the vector are accessible from the FLAGS pointer
returned by the @LAGSS SuperMisor Call. Thus, any initialization routine that is part of
a nenory configuration can be executed if its entry address is nade avail able to @ONFG
This is acconplished by placing your entry address into @CN-G while you save the forner
address - eventually transferring control to the former address when your routine
conpl etes its execution. This process is called "chaining into @CNFG'. If you need to
configure your own routine that requires initialization when the machine is booted, you
chain into @ONFG

Let's first look at a sanple initialization configuration routine |inkage. Your
initialization routine would obviously be unique to the function it was to performso we

will not illustrate that part. Atenplate for such a routine woul d appear as:
INT CALL RQUTI NE Start of init
LI NK DB ' Roy' :Pass to the chain
RQUTI NE .

Your initialization routine

i?EI’ :End with a RET instruction!

The relocated address identified by the label "INT' is the entry point that wll be
pl aced into the @ONG vector field. The 3-byte field identified as "LINK' will be used
to store the original contents of the @ONG vector field. Thus, when INT receives
control, it "calls" your initialization routine then passes back to the next routine
chained i nto @ONFG

Ve wll now illustrate a procedure to acconplish the chaining |inkage. The chaining
procedure is perforned by that part of your programwhich is going to place the menory-

8-1

resident routine into its execution location in nenory. The first thing that nmust be done
is to nove the contents of the @ONFG vector into your initialization routine. The code:

LD A GLAGSS ; Get flags pointer

RST 40 ; intoregister 1Y

LD A (1Y+28) ; Get @QONFG byte 1

LD (LINK, A ;& save in LINK+O

LD L, (1Y+29) :CGet address LOWand H
LD H (1Y+30) : then save in the

LD (LINK+1), HC : LINK address vect or

does this by transferring the three byte vector to your routine. You then need to
rel ocate your routine to its execution nenory address. Once this is done, transfer the
relocated initialization entry point to the @CNG vector as a junp instruction with this
code:

LD H,INT ; Get (rel ocat ed)

LD (1Y+29), L : init address

LD (1Y+30),H

LD A, 0C3H :Set JP instruction

LD (1Y+28),A

It is sonmetines necessary to have your initialization programexecute the initialization
routine so that the function of the nodule is imediately available. You probably do not
want to execute any other routines that may be chained i nto @CONG so you shoul d not CALL
the chain! Your initialization routine can be executed by calling its relocated address
as in:

CALL RQUTINE ;Initialize only mne

Don't forget to SYSGEN after linking in your routine. The SYSGEN process includes saving
the revisions to @ONFG so that any changes will be part of the system configuration the
next time the disk is booted. By following these procedures, you can effect the
i nvocation of your routine every tine you boot the operating system di sk which contains
this configuration.

8.2 THE KFLAGS SCANNER

Many applications have the need to detect a PAUSE or BREAK condition while they are in
execution. BASIC does this after every logical statement is executed (i.e. after each end
of line or ":" statenent separator). That's how in BASIC you can stop a program with
the <BREAK> key or pause a listing. The classical nethod that programmers have used to
detect the condition was to scan the keyboard via the @BD SuperVisor Call. If a
character was input, and it was a <BREAK> or a <PAUSE>, the appropriate action would be
taken. Any other entry that was avail abl e woul d be ignored which would discard all other
keyboard entries. Unfortunately, if the user was trying to make use of keyboard type-
ahead, each @®BD request |ooking for <BREAK> or <PAUSE> woul d extract one character from
the type-ahead buffer; thus the user's typed-ahead entries woul d be | ost.

Anot her nethod coul d be used on a matrix keyboard that is accessible to the application.
This method does not request entries via the @BD call but scans the keyboard physically
examning the keyboard matrix. A problem with this method is that accessible natrix
keyboards are not always available. A second problem is that if such a keyboard was
avail abl e, the application would not be portable across Version 6 installations.

If an application uses the KFLAGS keyboard function latch to observe the BREAK or PAUSE
condition, it overcomes these deficiencies [a third condition - that of the ASCIl CRis
al so supported]. KFLAGH contains three bits associated wth the "keyboard" functions of
BREAK, PAUSE (sonetimes interpreted as <SHFT-@), and CR (sonetines interpreted as

8-2

<ENTER>). An interrupt task processor routine (herinafter called the KFLAGS scanner or
just scanner) exam nes the physical keyboard and sets the appropriate KFLAGP bit if any
of the conditions are observed. Smlarly, the systems CGOM serial driver routine also
sets the appropriate KFLAGH bits if it detects the natching conditions being received. In
the KFLAGB, bit-0 is assigned for BREAK, bit-1 is assigned for PAUSE, and bit-3 is
assigned for CR

It is inportant to note that the interrupt KFLAGP scanner does NOT reset the condition

bits - it only sets them Thus, it is up to the application using these flag conditions
to reset the bits as required. Now, you may ask, why wasn't the scanner coded so that it
resets the bits? Wll, if that was the case, you woul d never sense the "events" as they

woul d occur too fast. Think of the KFLAGH condition bits as a latch. Oice a condition is
detected (latched), it remains latched until some routine resets the latch, usually after
examning a condition and taking action - a function to be performed by a KFLAGH
examnation routine that is part of the application using it.

Wth this introduction, let's look at an illustrative routine designed to use the <BREAK>
and <PAUSE> conditions of the KFLAGH latch. This routine assumes that index register 1Y
can be altered with inpunity.

CKPAWS LD A, @FFLAGSS ; Get F ags pointer
RST 40 ; intoreg lY
LD A(IY*K-"A) ;Pluthe KFLAGS
RRCA ;Bit O0tocarry
JP C QOIBRK ;G on BREAK
RRCA ;Bit 1tocarry
RET NC ;Return if no pause
CALL RESKFL ; Reset the flag
PUSH DE ;Don't alter reg DE
FLUSH LD A, @BD ; Fl ush type-ahead
RST 40 : buffer while
JR Z, FLUSH ; ignoring errors
PCP DE
PROWT PUSH DE
LD A, GXEY ; Vit on key entry
RST 40
PCP DE
cP 80H : 0 on <BREAK>
JP Z, QOTBRK
cP 60H ; I gnore <PAUSE>
JR Z, PROVPT ;. else ...
RESKFL PUSH H : Reset KFLAGH wi t hout
PUSH AF ; altering AF or HL
LD A GLAGSS ; Plu flags pointer
RST 28H ; intoreg lY
RESKFL1 LD A(lY*K-"A) ;Pluthe flag
AND OF8H ;Strip ENTER
LD (IY#¥ K-"A),A ; PAUSE BREAK
PUSH BC ;Don't alter register BC
LD B, 16
LD A, @AUSE :Pause a bit to "debounce"
RST 40 ; the key entry
PCP BC
LD A(lYHK-"A) ;Check if finger is
AND 7 ; still on key
JR NZ, RESKFL1 ;Reset it again
PCP AF ;Restore registers
PCP H ; and exit
RET

In order to understand this KFLAGP exam nation routine, the best thing to do would be to
take apart the entire routine and expl ain each sub-routine. The first piece:

8-3

CKPAWS LD A, @FFLAGSS ; Get H ags pointer
40

RST ; intoreg lY

LD A(IY*K-"A) ;Pluthe KFLAGS
RRCA ;Bit O0tocarry
JP C QOIBRK ;G on BREAK

RRCA ;Bit 1tocarry
RET NC ;Return if no pause

reads the KFLAGP contents. The @LAGS$ SuperVisor Call is used to obtain the flags
pointer fromthe DC5. Be aware that if your application is using the IY index register,
then you better save and restore it within the CKPAWS routine (alternatively, you could
use nenory loads in lieu of 1Y indexing, use @LAGS at the begi nning of your application
to calculate the location of KFLAGh, and stuff the address into the CKPAWS nenory LD
instructions.) The first rotate instruction places the BREAK bit into the carry flag.
Thus, if a <BREAK> condition was in effect, the sub-routine would branch to "GOIBRK' -
which is your break handling routine. If there is no pending BREAK the second rotate
pl aces what was originally in the PAUSE bit into the carry flag. If a <PAUSE> condition
is not ineffect, the routine returns to the caller. This sequence of code gives a higher
priority to <BREAK> (i.e. if both BREAK and PAUSE conditions are pending, the <BREAK>
condition has precedence). It is inportant to note that the GQOIBRK routine needs to clear
the KFLAGh bits after it services the <BREAK> condition. This is sinply done via a call
to RESKFL.

The next part of the routine is executed on a <PAUSE> condition.

CALL RESKFL ; Reset the flag

PUSH DE ;Don't alter reg DE
FLUSH LD A, @BD ; Fl ush type-ahead

RST 40 : buffer while

JR Z, FLUSH ; ignoring errors

PCP DE

First the KFLAGP bits are reset via the call to RESKFL. Next, we take care of renoving
any characters that are stored in the type-ahead buffer (the systemw |l automatically
clear the type-ahead buffer when a BREAK condition is latched). This can be done by
repeatedly invoking the @BD request until it returns a "no character avail able"
condi tion code.

Now that the routine is in a PAUSEd state and the type-ahead buffer is cleared, it nust
wait for a key input. The followi ng routine does this:

PROWT PUSH DE
LD A, GXEY ; Vit on key entry
RST 40
PCP DE
cP 80H : 0 on <BREAK>
JP Z, QOTBRK
cP 60H ; I gnore <PAUSE>
JR Z, PROVPT ;. else ...

The PROWPT routine is coded to accept a <BREAK> and branch to your BREAK handling routine
so that the user can "abort" froma PAUSE It wll ignore repeated <PAUSE> entries (the
60H is the standard byte value that is interpreted as a PAUSE entry). Any other character
will cause it to fall through to the follow ng routine which clears the KFLAGS | at ch.

RESKFL PUSH H : Reset KFLAGH wi t hout
PUSH AF ; altering AF or HL
LD A OLAGSS ; Plu flags pointer
RST 40 ; intoreg lY
RESKFL1 LD A(lY*K-"A) ;Pluthe flag
AND OF8H ;Strip ENTER

8-4

LD (1Y K-"A),A ; PAUSE BREAK

PUSH BC ;Don't alter register BC
LD B, 16

LD A, @AUSE :Pause a bit to "debounce"
RST 40 ; the key entry

PCP BC

LD A(lYHK-"A) ;Check if finger is

AND 7 ; still on key

JR NZ, RESKFL1 ;1f so, reset it again
PCP AF ;Restore registers

PCP H : and exit

RET

The RESKFL subroutine needs to be called when you first enter your application. This is
necessary to clear the flag bits that were probably in a "set" condition. This "prines"
the detection. The routine also needs to be called once a BREAK PAUSE, or ENTER
condition is detected and handl ed.

Another method that can be used to detect the BREAK condition is to use the @KBRKC
SuperVisor Call - SVG105. This SVC essentially perforns all of the code needed to test
the BREAK bit of the KFLAGP and reset it as required. Thus, instead of using your own
code to test the KFLAGH' s BREAK bit, you can invoke @KBRKC. An NZ return indicates that
the BREAK key was depressed. Since the SVC also clears the BREAK bit, it should be
i nvoked once at the begi nning of your programto ensure that the bit is first reset.

8.3 DI SK LOAD MODULE FORNMATS

A load nodule is sinply a disk file that can be | oaded into menory by the system | oader.
The file is nade up of variable length records and is usually a program Many different
types of records are included in a |load nodul e - the DO5 makes extensive use of distinct
record types in load nmodul es. One record type is a load record which contains information
on where it istoload into nenory. If the file can be directly executed as a program it
then becomes known as an executable |load nodule (ELM). The usual term that has been
applied to such a file is "OMD'. That's because a directly executable |oad nodul e can be
invoked as if it were a system CoManD. V¢ further use the default file extension of /QWD
for these coomand files.

A |l oad nodul e can be conceptual i zed as a sequence of RECCRDS. Note that we did not say an
ordered sequence. Thus, the inplication is that the records do not have to be in an
ascendi ng order (contiguous |oad addresses). Each record contains three fields: a TYPE
field, a LENGIH field, and a DATA field. It has a one-byte indicator as to what TYPE of
record it is. This TYPE code is used to denote a record as a HEADER record, a TRANSFER
record, an I1SAM directory entry record, a LQAD record, or other neaningful structure.
Each record al so has a one-byte LENGIH field which is the length of the data area field.
The data field I ength thus ranges from<1-256> in value. The remai ning part of the record
is its DATA AREA and is used to store program code, directory infornmation, messages, or
other pertinent infornmation. If you are famliar wth BASI C random access files, you will
see the simlarity in the fielding of records - except in this case, we have variable
I ength sequentially accessed records [with partitioned data sets provided in the PRO PaDS
utility, you also have variable length indexed sequential accessed records]. Figure 8-1
lists the various TYPE codes currently used in the operating system

8-5

|

|

| 01 (bj ect code | oad bl ock |
| 02 Transf er address |
| 04 End of partitioned data set nenber |
| 05 Load nmodul e header |
| 06 Partitioned data set header |
| 07 Pat ch nane header |
| 08 |SAMdirectory entry |
| 0A End of ISAMdirectory |
| oC PDS directory entry |
| OE End of PDS directory |
| 10 Yanked | oad bl ock |
| 1F Copyri ght bl ock |
| |

Figure 8-1: Load Mddul e TYPE Codes

Any code above X 1F is invalid as a record type. In addition, any code not listed in
figure 8-1is reserved for future use.

Let's look at a sanple file. Start by listing the first sector of the FLCPPY/ DCT utility
via the command: LIST FLCPPY/DCT (H . Notice that it starts out with:

05 06 46 4C 4F 50 50 59 1F 2A 43 6F ...
FLOPPY . . Co...

stretched across the screen. What you have here is a |load nodul e header (TYPE=05). The
length byte (LENGIH=06) follows the TYPE code. The 6-byte DATA AREA field is the header
nane. Al records follow this "fielding" order. A record is organized with a TYPE
LENGITH, DATA sequence. The X 1F begins the second record. It happens to be a copyright
record with a LENGIH of X 2A or 42 decinmal bytes. Incidentally, the TYPE=1F record is
generated automatically by the "COM pseudo-op in PRO CREATE, the assenbler used to
devel op and mai ntain the operating system

Note that each record begins with the TYPE code and the first byte followi ng the end of a
record is always the TYPE code of the next record. The only exception is when a TYPE code
indicates the end of a file. If you look further in the record displayed at relative
position X 34", or if you count 42 bytes down fromthe "C' of "Copyright”, you will see:

01 02 00 2C b ...

The record TYPE is a load block (TYPE=01), and the length of the data area is X 02', or
258 data bytes. Yes, we previously stated that the length ranged up to 256 and here we
have 258! This TYPE-0l1 record is a special case. The two-byte field follow ng the LENGIH
is the starting | oad address for the rest of the field. Since the LENGIH val ue i ncl udes
the 2-byte | oad address, a length of X 03" would indicate only one |oad byte. A length of
X 04" would indicate two load bytes. A length of X FF would indicate 253 load bytes. A
length of X 00' woul d indicate 254 | oad bytes. To be able to have a data area with up to
256 bytes of |oadable data, the LENGIH values of X 01' and X 02' are indicative of 255
and 256 |oad bytes respectfully. This is acconplished by having the system | oader
decrerment the length value by two when reading a |oad address. The resultant value
becores the true length of the | oadabl e data.

If you let the programlisting proceed to the end of the file, the | ast four bytes should
appear as:

8-6

02 02 00 2C

This will represent the TRANSFER record (TYPE=02). Again, we have a LENGIH byte which
shows a 2-byte data field. The data field contains the transfer address or entry point to
the programin standard | oworder, high-order sequence. The system uses this address as
an entry to the program after successfully loading it into nemory. This address is al so
what is returned in register pair HO by the @QAD SuperVi sor Call.

So far we have discussed the HEADER the OCPYR GHT, the LOAD, and the TRANSFER records.
These are the four common record types you will find in nost load nmodule files. W al so
observe that our discussion of program|oad nodules was limted to a single program per
file. Another kind of file is one that contains many program nodul es (or data rodul es) as
sub-files. Since the file is divided into sub-files, it is considered a "partitioned data
set" abbreviated as "PDS". The PDS contains a directory of its sub-files with each sub-
file being termed a MEMBER of the PDS and having an entry in the directory. The system
| oader supports a particular kind of PDS used to contain the library overlays: SYS6/SYS,
SYS7/ SYS, and SYS8/SYS (LIB A B, and C respectively).

Let's take a look at one of these libraries. List the first record of SYS6/SYS via the
command: LIST SYS6/SYS. LSIDCS (H . Look at the area just past the copyright nessage. You
wll see sonething like this:

08 06 21 00 24 00 00 CB 08 06 61 ...

The TYPE code of X 08 indicates an | SAM D RECTCRY ENTRY record. The LENGIH byte denotes
a DATA area of six bytes. After the sixth byte, you will see another TYPE=08 starting
another 1SAM directory entry record. SYS6 is a partioned data set. The TYPE=08 records
are the directory entries for its nmenbers.

The ISAM directory data area is used by the SYSTEM | oader to |ocate where a particul ar
nmenber can be found in the file. The data area includes positioning infornation
indicating the exact byte position in the PDS which is the first record of the nenber.
The six-byte data field is further divided into sub fields. The first byte (in this case,
21) is the ISAMentry nunber. This entry nunber is provided to the system | oader when a
library command is parsed by the command interpreter. The entry nunber is the PDS menber
that wll execute your request. The system |oader searches the PDS directory for a
matching directory record. The next two-byte sub-field is the transfer address of the
nmenber. The transfer address is contained in the directory so that nore than one transfer
address can be applied to a nenber. Therefore, a nenber can have multiple entry points.
The last three-byte field is the triad pointer which points to the first byte of the
nmenber. The triad pointer is conposed of the Next Record Nunber (NRN) and Rel ative Byte
Cffset for the menber's first record byte. The systemthen positions to the pointer and
| oads the nenber. Thus you have six bytes of data as specified by the LENGIH byte. S nce
the process uses an index (the directory) to locate the menber's starting byte then
proceeds to sequentially read the menber, the access nethod is termed "I ndexed Sequenti al
Access Met hod" (1 SAV).

A TYPE-08 record can al so have a 9-byte data area. In the PROPaDS utility available from
M SCBYS, the |1SAM directory entry record includes a three-byte subfield which contains
the TRUE length of the nenber. The position of a nenber's logical end-of-file (ECGF) can
thus be calculated by adding its length to its position and adjusting for sect or
boundary al i gnnent .

Wiile you are looking at the first sector of SYS6, proceed to the first byte follow ng
the last 1SAMdirectory record. You w |l observe the sequence:

OA 01 00 04 01 00 01 02 00 26 ...

8-7

The TYPE=OA indicates that it is the end of a PDS directory. The SYSTEM | oader will
return a "file not found" error if it reaches this record without finding a match of the
| SAM nunber. The LENGIH=01 is needed because ALL |oad modul e records MJST have a length
byte. The DATA area contains only a single arbitrary byte, X 00'. VW cannot indicate a
nul | record because a length byte of X 00' indicates 256 data area bytes. Thus, the X OA
record type nust have a mnimumof one byte in its data area.

The followi ng record is a TYPE=04 to indicate the end of a PDS nenber. This record serves

but one purpose when used immediately followng the directory - it wll result in the
return of a "Load file format error™ if alibrary file is executed as if was a CMD file.
Wien not expecting a partitioned data set file, the SYSTEM |oader wll ignore record

types other than X 01' and X 02' except for the X 04'. The file reading will termnate at
the X 04' with the above-nentioned error message.

The record type X 04' is usually used at the end of each partitioned data set nenber. If
you list through SYS6, you will discover that each nmenber ends with "04 01 00" rather
than a TYPE=02 record. The system | oader uses the X 04' type code in lieu of the transfer
address code because the SYSTEM |oader recovers the transfer address from the |SAM
directory. Thus it needs to take action different fromthat when a standard load file has
been conpl etel y | oaded.

The next record types to discuss are those used in a generalized PDS file as exenplified
inthe PROPaDS utility. Such a file starts with a record type X 06" in lieu of an X 05
which is the normal header type for a load nodule. The first rel ease of PRO PaDS uses the
X 06" in certain utility commands to note whether the referenced file is a partitioned
data set conpatible with PROPaDS utilities. The DO5 does, in fact, nake this information
avai |l abl e known by setting a bit in the FCB when a PDS file is opened.

The PRO PaDS partitioned data sets include a MEMBER D RECTCRY whi ch correl ates the nenber
NAME with its associated |SAMentry nunber. A representati ve PDS MEMBER D RECTCRY entry
| ooks like this:

0C 0B 64 69 72 20 20 20 20 20 01 01 7A OC ...
DI R ..z

The TYPE=0OC record indicates a PDS nenber directory entry record. The LENGIH byte
specifies that the data area is an 11-byte field. The DATA AREA is subfielded as an 8-
byte nenber nane (stored in |lower case), a one-byte |SAM entry nunber that is used to
match up with a corresponding 1SAM directory entry record, and a 2-byte field of menber
data. The first byte uses bit-7 to indicate a data nenber in contrast to an executable
CMD program Bit-6 indicates that the nenber has been established as "sector-origin" and
can be directly accessed by linkage to the standard file access routines supported in
PRO PaDS Version 2. Bit positions 5-4 are reserved for future use. Bits 3-0 and the next
byte contain the 12-bit DATE field formatted as in the standard directory entry record.
This entry is the date that the menber was added to the PDS. The end of the MEMBER
D RECTCRY is indicated by a TYPE=OE record with its expected | ength and data field (as in
"OE 01 00"). The purpose of this record is simlar to the TYPE=0A record for the |SAM
directory. It indicates the end of the MEMBER directory. The ISAMdirectory is positioned
inthe PDSto foll ow the MEMBER directory.

e last set of record types to discuss is the records associated with the PATCH utility.
Wien you apply an X-patch to a file, the name of the patch file is used as a header nare
with a record type of X 07'. Thus, if you want to YANK the patch, the PATCH program can
read through the file and search for a |ike-named header. 1f a matching header is found,
PATCH wi || change the header record type to a X 09 to indicate a yanked patch. Al so,
since it nmay be inpossible to renove the patch wthout bubbling up any code bl ocks
following the patch (another patch nmaybe?), PATCH will change the TYPE=01 records to
TYPE=10 records. The TYPE=10 records wll not be |oaded by the SYSTEM | oader but wll be

8-8

considered as non | oadabl e comrent records. It is thus possible to "un-yank" a yanked
pat ch; however, this feature is not inplenented in the PATCH utility.

8.4 ERROR MESSAGE DI CTI ONARY

Any time a SuperVisor Call experiences a nalfunction, it returns an error code to the
caller. The error codes possible are in the range <0-63>. The operating system associ at es
a nessage string with each error code. Each string can be displayed or obtained via the
@RRCR SuperVisor Call request. The words contained in the nessages are stored in an
error dictionary which is in a system overlay. This section of the appendix is a
conpi l ati on of those error code nessages and associ ated meani ngs.

Error 00: No error

Areturn code of zero indicates that there is no error.

Error 01: Parity error during header read

During a read request, the sector 1D FIELD could not be satisfactorily read. Repeated
failures would nost likely indicate media or hardware failure.

Error 02: Seek error during read

During a read sector disk 1/O request, a sector ID FIELD noting the requested cylinder
was not located within the tine period allotted by the controller. Ether the cylinder is
not formatted on the diskette, or the step rate designated is too low a value for the
har dware to properly respond.

Error 03: Lost data during read

During a read sector request, the CPU was late in accepting a byte from the FDC data
register and subsequently |lost one of the bytes fromthe sector. For nore information,
consult the reference manual for the floppy disk controller used in your disk controller.

Error 04: Parity error during read

During a read request, the FDC sensed a CRC error. Possible media failure would be
i ndi cated. The Drive hardware could al so be at fault.

Error 05: Data record not found during read

A disk sector read request was generated with a sector nunber not found on the cylinder
r ef er enced.

Error 06: Attenpted to read systemdata record

A read request for a sector located within the directory cylinder was nade w thout using
the directory read routines. Drectory cylinder sectors are witten with a data address
mark that differs fromthe data sectors data address nmark. See chapter 4 and chapter 5
for additional information concerning address narks.

Error 07: Attenpted to read | ocked/ del eted data record

This error indicates that a request was entered which required a systemoverlay that had
been purged fromthe system di sk.

8-9

Error 08: Devi ce not avail abl e

A reference was made for a logical device that either could not be located in the Device
Control Bl ocks or the hardware associated with the device was not available (for exanple,
a printer that was off-1line).

Error 09: Parity error during header wite

This is the same type of error as error-01 except that the operation requested was sector
WR TE.

Error 10: Seek error during wite

This is the same type of error as error-02 except that the operation requested was sector
WR TE.

Error 11: Lost data during wite

The CPU was not fast enough in transferring a byte to the FDC during a sector wite
request so it could be witten to the disk. Therefore, one or nore of the sector bytes
were | ost.

Error 12: Parity error during wite

A CRC error was generated by the FDC during a sector wite operation.

Error 13: Data record not found during wite

This is simlar to error-05. The sector nunber requested for the wite operation, could
not be |l ocated on the cylinder being referenced. Ether the request is erroneous, or the
cylinder is inproperly formatted.

Error 14: Wite fault on disk drive

This error nessage results when the disk controller returns a "wite fault"™ error.
Consult your FDC or HDC reference manual .

Error 15: Wite protected disk

A wite request was generated to a disk which either had a wite protected diskette or
the drive was wite protected via software (see the SYSTEM (W) DO5 command). Onh 5-1/4"
di skettes, covering the notch will protect the diskette frombeing witten. h 8" rmedia,
exposing the notch will performthe same thing. If you want to wite on a diskette, you
nust observe the proper notch condition.

Error 16: Illegal |ogical file nunber

A Drectory Entry Code was referenced that was invalid for the referenced drive.

Error 17: Drectory read error

Any disk error sensed during the reading of directory entry record sectors will result in
this error. It could be nmedia failure, hardware failure, or programcrashes. The systems

directory read accesses replace any lower level error (such as parity error) with this
code.

8-10

Error 18: Drectory wite error

This error is simlar to error-17 but the error condition is sensed while attenpting to
wite a directory sector back to the disk. The integrity of the directory i s now suspect.

Error 19: Illegal file name

The file specification provided to the systemcontains a character not conformng to the
file specification syntax.

Error 20: GAT read error

D sk errors sensed while reading the Ganule Allocation Table will cause this error. It
could be nedia failure, hardware failure, or program crashes.

Error 21: GAT wite error

This error is simlar to the error-20 except that the error was sensed during a WR TE
request. The integrity of the GAT is suspect.

Error 22: HT read error

This error is simlar to error-20 but occurred during a READ of the Hash I ndex Tabl e.
Error 23: HT wite error

This error is simlar to error-21 but occurred during a WR TE of the Hash I ndex Tabl e.
Error 24: File not in directory

This error indicates that a file specification was referenced for CPEN that could not be
located in the directory. Note that if the request was to LOAD a program | oad nodul e
file, the error code returned would be "Program not found". Mst likely the cause was a
m sspel l ed fil espec.

Error 25: Fil e access deni ed

This indicates that an access request was nmade for a file that was password protected and
the access protection | evel was NONE

Error 26: Directory space full

An open of a new file was requested and the target disk either was not available or its
directory was entirely in use. Use another diskette or remove uneeded fil es.

Error 27: D sk space full

Wile a file was being witten, all available space on the disk was allocated before the
file was conpletely witten. Watever space was already allocated to the file will still
be allocated although the file's end of file pointer will not be updated. It may be
useful to renmove the file to recover the space after witing the file to another
di skette.

8-11

Error 28: End of file encountered

The end of a file was reached during a read or position access. The file was probably
snmal l er than the application expected. This error can also be used within an application
to determne the end of a sequentially read file.

Error 29: Record nunber out of range

A request was nmade to read a sector of a file where the Next Record Nunber of the sector
was beyond the Endi ng Record Nunber.

Error 30: Drectory full - can't extend file

This error will result when the system nust allocate an extended directory entry (FXDE)
to afile because it has used all extent fields of its last directory entry record and no
spare directory slot is available. Al available directory entry records are in use. The
solution would be to repack the disk by individually copying its files to a freshly
formatted diskete.

Error 31: Program not found

The execution of a OWD program file could not be conpleted because the file was not
located in the directory. Ether the filespec was msspelled or the disk that contained
the file was not nounted.

Error 32: Il1legal drive nunber

This error will occur whenever a reference is nade to a disk drive that is not included
in your system It nay be disabled, or the drive requested was not ready for access (no
di skette, drive door open, etc.).

Error 33: No devi ce space avail abl e

This error will generally be returned by the SET command when you enter a request to
establish a new device in the systemand all of the resident system area reserved for
Device Control Block tables is already in use. It is suggested that you use the "DEVI CE
(B=Y)" command to see if any currently defined non-system devices can be elimnated by
usi ng RESET.

Error 34: Load file format error

This error will be returned by the system | oader when an attenpt is made to LQAD a file
that does not conform to the load nodule fornmat structure. Mst likely, the file
referenced is a data file or a BASIC programfile.

Error 35: Menory faul t

This error indicates that a nenory cell malfunctioned during the process of |oading a
programfil e.

Error 36: Attenpted to |l oad read only nenory

This error would be returned if the program file being | oaded referenced a menory cell
that could not be altered. Ether the cell was part of the read only nenory (RQV), or the
address was referencing an area of the machine not containing any read/wite nenory
(RAM. Do not expect to see this error.

8-12

Error 37: Illegal access attenpted to protected file

This indicates that an access request was made for a file that was password protected and
the access protection level was not net for the request. Check if the disk is wite
pr ot ect ed.

Error 38: File not open

A file access operation was requested using a File Control Block that indicated a cl osed
file. Most likely, there was a programerror.

Error 39: Devi ce in use

A request was nmade to REMOVE an active device fromthe Device Control Block table. It is
necessary to first RESET a device before renmoving it.

Error 40: Pr ot ect ed system devi ce

A request was nade to REMOV/E a standard system device. You cannot renove system devi ces
such as *KI, *DQ *PR *JL, *SlI, and *SO

Error 41: File already open

A request was nmade to open a file that was al ready open with an access | evel of UPDATE or
greater. If you are in a single user environnent and you know that the file is not open,
you can reset the "open" indication by issuing a "RESET fil espec” command.

Error 42: LRL open fault

This error indicates that a file was opened with a logical record |length passed in the
open linkage that differed fromthe file's LR. as stored in its directory. The file wll
be properly opened with the LRL passed in the open. This error is for infornation only.

Error 43: SVC paraneter error

This error will be returned by a SuperVisor Call when one or nore paraneters associ ated
with its register |linkage contain invalid val ues.

Error 44: Par anmet er error

This error is returned by the paraneter scanner when it detects in invalid comrand |ine
paraneter string. The error is usually caused by a nisspelled parameter name or val ue,
use of an unsupported abbreviation, or by entering a paraneter that does not exist for
the command i nvoked.

Errors 45-62: Unknown error code

Error codes in this range nay not be defined by the operating system Any time the @RRCR
routine is called with an error nunber in this range, the "Unknown error code" message
wll be displayed. It nost likely indicates a software probl em

Error 63: Extended error

This error code is used to indicate that an extended error code is in register pair H.

The @RRCR routine will display "** Extended error, HL. = X nnnn'" if called with error-
63.

8-13

8.5 HEADER PROTOCOL OF MEMORY MODULES

A nmodul e of code can be relocated into high menory so that it's last byte is positioned
at the value returned fromthe @ G SuperM sor Call. The nodule is then protected from
bei ng overwitten by other modules by adjusting HGH to point to the address precedi ng
the start of the nmodule. Mdules relocated and protected in this nanner, nust include a
standard header that identifies the modul e. Mddul es pl aced into the |ow nenmory 1/0O driver
region al so nust adhere to this standard. The header is used by the systemto acconplish
a nunber of inportant functions. First, it provides a locatable storage region for
pointers used in the device independent |ibrary operations. Second, it provides a name
string used by the @IMD SuperVisor Call to locate a specific module. CGher data
contained in the header provides the infornation needed to identify the entry address of
each nmodul e so prot ect ed.

The fol |l owi ng code describes this standard header:

ENTRY JR BEGA N ; Branch around |i nkage

STUFH DW $-3 ; To contain | ast byte used
DB MCDDCOB- ENTRY-5 ; Cal cul ate | ength of ' NAME
DB " MCDNAME :Nanme of this nodul e

MODDCB DW $-3 ; To contain DCB poi nter for nodul e
DW 0 ; Reserved by the DCB

-k —k —%

; Area that can be used to store data

* —k —%

BEGN EQU $

; Actual nodul e code start

Let's examne this nodul e header line by line so that you gain an understanding of its
purpose. At the label "ENTRY', the header always will have a relative junp instruction.
The operand of the junp will al nmost always reference the starting address of your nodul e.
An exception to this would occur if the data area was extensive so that it placed the
| abel "BEA N' beyond the range of the junp relative instruction. If such was the case,
you nust provide an absolute junp (JP) instruction just prior to the data area. The
address of this instruction will then be used as a reference in the operand field of the
ENTRY junp rel ative.

It is also possible that the "nodule"” is not a program but rather a data area that you
have reserved. This data area nust still have a menory header; however, since there
exists no BEAN address, it is recoomended that you reference the operand of the ENTRY
junp relative instruction so that it junps to ENTRY (i.e. junps to itself). This is the
second excepti on.

The 2-byte storage region identified by the label STUFH nust be loaded with a val ue
equal to the last nenory address used by the nodul e. The program routine that rel ocates
the nodule into its nemory position is responsible for loading this value. The systems
@5TMID routine uses the value to be able to branch sequentially fromnodul e to nodule. If
the nodule is placed into high nenory, this address value is the value returned by
@ G

The next two fields of the header are the nane LENGIH and NAME fields. The NAME field
wll contain the nodule's nane as assigned by the programrer. This is the name string
that is used in the @IMD SuperVisor Call to |ocate the nodul e. The nane must range from
<1-15> characters in length and cannot have any character value below X 20'. The length
of the nane is then placed into bit positions 0-3 of the LENGIH field. The system uses
the length value to determne how nany characters nmust be natched in the NAME field. Bits
4-7 of the LENGIH byte are reserved by the operating system

8-14

If the module is a device driver or filter, then it was assigned a Device Control Bl ock
when the driver or filter was invoked with the SET command. The SET command passes a
pointer to this DCB in register pair DE when the initializing programfirst executes. It
is the responsibility of the initializing programto |oad the DCB pointer into the 2-byte
MIDDCB storage field. The system requires this pointer for proper operation of its
character 1/0O device chai ns.

The last 2-byte field is loaded with a binary zero. It's use is reserved by the operating
system You rmay conveniently use the nenmory region after this address for the storage of
any data. Thus, the pointer returned froma successful @IMD search for the nodule will
be easily used to index the data area.

8.6 | NTERRUPT TASK PROCESSOR | NTERFACI NG

The operating system is designed to function on hardware that can provide a maskabl e
interrupt (mode 1). This interrupt can be generated either by a standard A ock Timer Chip
(CTQ or it can be derived by other clocking nethods (synchronized to the AC line
frequency or decoded from sone other frequency generator). An operating system Task
Processor (TP) nmanages this interrupt to perform background tasks neccessary to perform
specific functions of the DC5 (such as the tine clock where a hardware clock is not
provi ded, blinking cursor where a CRTC blinking cursor is not provided, etc.).

The TP provi des twel ve individual TASK SLOTS that are executed on a "tine-sharing" basis.
The interrupt rate is software divided into three different timng groups spread across
the task slots. One of these task slots is considered "high priority" and functions
approximately 60 times a second (the exact tine period depends on the interrupt rate
provided). Three are considered "nedium priority" and execute 30 tines a second. The
renaining eight are considered "low priority" and execute at a rate of 30/8 tines a
second (or 15 times every four seconds). The task task slots are nunbered 0-11 with 0-7
being "low priority" tasks, 8-10 being "nedium priority" tasks, and 11 being a "high
priority" task.

The DO5 naintains a Task Control Bl ock Vector Table (TCBVIT) which contains 12 vectors -
one for each of the 12 possible task slots nunbered fromzero through el even. Five system
SuperVisor Calls that manage the task vectors are provided. These and their functions
are:

@KTSK = Check if a task slot is unused or active
@0DTSK = Add a task to the TCBVT

@RVTSK = Renove a task fromthe TCBVT

@LTSK = Renove the currently executing task

@RPTSK = Repl ace the TCB address for the current task

The next point nust be conpletely understood since it has caused confusion to nany
attenpting to learn how to interface to the TP. The Task Control Bl ock Vector Table
(TCBVT) contains vector pointers. The TCBVT vectors PONI TO A 16-Bl T LOCATICN | N MEMCRY
VWH CH GONTAI NS THE ADDRESS CF THE SERVI O NG RQUTI NE. Thus, the tasks thensel ves are twice
indirectly addressed (those programmers famliar with Cwll observe that the TCBVT is an
array of pointers to pointers). Mike sure you keep this in mnd Wen you program an
interrupt service routine, the entry point of the routine needs to be stored in menory.
If we call this storage |ocation the beginning of a Task Control Bl ock (TCB), the reason
for the indirect method of addressing interrupt tasks will become nore clear. Let's
illustrate an exanpl e TCB.

MYTCB DW MYTASK
COUNTER DB 15
TEMPY DS 1

MYTASK RET

8-15

This is obviously an extrenely useless task since all it does is return from the
interrupt. However, note that a TCB location has been defined as "MTCB' and this
location contains the address of the task. A few nore data bytes imrediately follow ng
the task address storage have al so been defined. Upon entry to an interrupt task service
routine, index register "IX'" wll contain the address of the TCB. You, therefore, can
address any TCB data using index instructions as in "DEC (I X+2)" which will decrenent the
val ue contained in "OCONTER'. Let's expand the routine slightly.

MTCB DW MYTASK
COUNTER DB 15
TEMPY DB 0
MYTASK DEC (1 X+2)
RET N4
LD (1X+2), 15
RET

Here we have made use of the counter. Each tine the task executes, the counter is
decrenent ed. Wien the count reaches zero, the counter is restored to its original value.
This task still is pretty worthless for its function except for its illustration of data
referencing. The big question is how does this task get added to the Task Control Bl ock
Vector Table (TCBVT)? V¢ use the @DISK SuperVisor Call for that. Assuning we have
decided that the task will be low priority, we nust locate an unused |lowpriority task
slot. W can see if slot 2 is available for use by invoking the @KTSK SVC as fol | ows:

LD C2 :Reference slot 2

LD A, @KTSK ;ldentify the SVC
RST 40 ;An "NZ" indication
JP NZ, | NUSE ; says that the slot

; is being used.

hce you ascertain that the slot is available (i.e. not being used by some other task),
you can add your task routine. The follow ng code will add such a task to the TCBVT:

LD DE, \YTCB :Point to the TCB
LD C2 :Reference slot 2
LD A, @\DTSK ;ldentify the SVC
RST 40 :1ssue the service call

V¢ just point register "DE' to the TCB, load the task slot nunber into register C then
i ssue the @DISK SuperVisor Call. The task, nost |ikely, would have been placed into high
nmenory and protected by adjusting HGHb via the @ GHb SuperVisor call. The DOB has been
desi gned to make specific use of bank-sw tched menory. The systems Task Processor will
always enable bank zero when the TP takes control to perform background tasks. It
restores the previously resident bank when it conpletes. This ensures that a single
nmenory bank wll consistently be available in high menory during interrupt task
processing. In order to properly control and nmanage this additional nenory, certain
restrictions have been placed on tasks. Any and all tasks nmust be placed in either |ow
nenory (address X 0000' through X 7FFF) or in bank zero of high nmenory (address X 8000
through X FFFF). It is up to the assenbly |anguage programrer to ensure that tasks are
pl aced in the correct menory area.

hce a task has been activated, it is sonetimes necessary to deactivate it. This can be
done in tw ways. The nost often way is to use the @MISK SuperVisor Call in the
fol | owi ng manner:

LD C2 ; Designate the task sl ot
LD A @MTSK ;ldentify the SVC
RST 40 ;I nvoke the service call

8-16

What coul d be nore sinple? VW identify what task slot to remove by the value placed into
register C then issue the supervisor call. Another nethod can be used if we want to
renove the task WH LE VE ARE EXECUTING I T. Consi der the routine nodified as foll ows:

MYTCB DW MYTASK
QOUNTER DB 10
TEMPY DB 0
MYTASK DEC (1 X+2)
RET NZ
LD A, @XLTSK ;ldentify the SVC
RST 40 ;I nvoke the service call

The @KLTSK service routine will renove the currently executing task. Since this task is
currently executing, it is the one that gets renoved from the TCBVT table. The system
wll not return to your routine but wll continue as if you had executed an "RET"
instruction. Therefore, the "@LTSK' SuperVisor Call should be the last instruction you
want executed. In this exanple, MYTASK will decrenent the counter by one on each entry to
the task. Wen the counter reaches zero, the task will be removed fromslot 2 (renenber
it was placed in slot 2).

e additional TP SuperVisor Call is @¥PTSK. The function is easy to say in words;
however, its function is best illustrated. The @®PTSK function wll wupdate the TCB
storage vector (the vector address in your task control block) to be the address
imediately following the @PTSK SVC instruction. This is also another case where the
systemwi Il NOT return to your task routine after the SVCis nmade but rather continues on
with the TP. To illustrate how this TP function is used in a program the final exanple
shoul d be exani ned:

First, let's point out that this task routine contains no nmethod of relocating it to
protected RAM The statements starting at label, BEAN add the task to TCBVT slot zero
(without checking for its availability) and return to DO5 Ready. The task contains a four
second down counter and a routine to put a character in video RAM (80th character of row
0). At four second intervals, the character toggles between '|' and '-'. The toggling is
achi eved by toggling the execution of two separate routines which perform the character
display. Wse is nade of the @¥PTSK TP call to inplenent the routine toggling. BExam ne
this task closely to ascertain the functioning of @¥PTSK

BEAN LD DE, TCB :Point to TCB & add the
LD CoO : task to slot O
LD A, @DTSK
RST 40
LD ACGXT Exit to DOB
RST 40
TCB DWW TASK
COUNTER DB 15
TASKA LD A, @PTSK ; Repl ace current
RST 40 ; task with TASKA
TASK LD BC 2<8. (R ' |’ ;Put a'|' character
LD H., 0<8. CR 79 ; at Row 0, Col 79
LD A, @/DCTL
RST 40
DEC (1 X+2) ; Decrenent the counter
RET NZ : &return if not
LD (1 X+2), 15 ; expired el se reset
LD A, @PTSK ; Repl ace t he previous
RST 40 : task with TASKB
TASKB LD BC 2<8.CR ' -' :Put a'-' character
LD H., 0<8. CR 79 : at Row 0, Col 79
LD A, @/DCTL
RST 40
DEC (1 X+2)
RET NZ

8-17

LD (1X+2), 15
JR TASKA

By firmy understanding the functions of each of the TP SuperVisor Calls discussed, you
wll be proficient at integrating interrupt tasks into your applications. A final note is
to be aware of the task slots already used by the DOS or other applications. Wse @KTSK
to find an unused task slot.

8.7 LOW MEMORY DETAI LS

The author thought long and hard concerning the inclusion of this section of the
Appendi x. Wiy is this section a problen? The Version 6 operating systemwas designed to
promote the devel opnent of portable software. The term portable, means not only shoul d
the software function frommachine to machine, it should al so function under each rel ease
of the DCB. The DC5 needs access to the storage of data for internal systemuse. Trying
to keep the menory locations of this data constant across all inplenmentations of the
systemis quite restrictive and usually becomes linmting to the healthy growth of the
system Keeping portability in mnd, the designers of the system have provi ded Super\i sor
Calls which return pointers to data that nay be useful to a program Thus, there shoul d
usually be no need to access data areas by menory address. W say "usual ly" since it is
possible that user's of the systemare witing machi ne-dependent SYSTEM code. This is the
only reason that the Appendix contains this section. It is recognized that once a data
address is known, application programmers tend to use it. RESIST THE IMPULSE. If the
system does not provide via an SVC, data that you think you need, perhaps you don't
really need the data. It is entirely possible that the information you need is actually
available via an SVC although not entirely obvious. Renenber, when you bypass the SVC
structure of the DC5, you nost certainly risk portability!

Wth the preceding discussion in mnd, let's first take a |look at the general uses of
each | ow core nenory page.

Sect or Page General Contents

n/ a 0 RST vectors, Fl ag tables, msc...

n/ a 1 SuperVisor Call Table

0 2 Bank data, 31 Device Control Bl ocks

1 3 System stack area, M scell aneous nachi ne dependent routi nes.

2 4 SystemInformation data, Drive Control Table, Input buffer.

3 5 Start of 1/0 handling and drivers. Extends to end of page
12H

The low core area starting at nenory page two is actually loaded by and from the
BQOI/ SYS. The system uses the first two sectors to contain BOOTI code needed to bring up
the system A booting RCMreads either the first or second sector of track O - the BQOT
track. This sector contains code which, in turn, reads the entire BOOI/SYS file.
Thereafter, BOOT |oads the resident systemfile, SYS0/SYS and transfers control to it.
Because of this process, part of low nenory is loaded directly from the BQOOI/SYS file
contained on track O while other parts of low nmenory are |oaded by SYSO/SYS. A
description of the booting process and the boot track is contained in another section of
the Appendix. Let's now |ook at some of the details of |ow nenory. REMEMBER THAT TH S
| NFCRVATI ON | S PROVI DED FCR USE O\LY | N EXTREME NON PCRTABLE S| TUATI ONS!

An asterisk follow ng the page byte(s) indicates a quantity that can be obtained fromthe
systemvia sonme SuperVisor Call. A pound sign indicates that the address is fixed due to
processor assi gnrrent .

8-18

8.7.1 Details of Low Menory Page O

Byt es Use

00- 02# RST 00 - Reserved for systemuse

03-04 reserved

05- 07 reserved

08- 0A# RST 08 - Available to applications

0B-0C SVORET$- Return address from SVC i nvocati on
0D LSVC$ - Last SVC invoked

OE- OF FDDI NT$- Used by FDC driver for SYSTEM (SMOOTH)
10- 12# RST 16 - Available to applications

13-17 USTOR$ - UWser application storage area

18- 1A# RST 24 - Available to applications

1B PDRV$ - Physical address of current drive
1G 1D PH GH5 - Physical high nenory

1E 1F LOM - Lowest usable address of high menory
20- 22# RST 32 - Available to applications

23 LDRV$ - Logi cal address of current drive
24- 25 JDOB$ - Saved FCB poi nt er

26- 27 JRET$ - Saved I/ Oreturn address

28- 2A# RST 40 - System SVC cal |

2B TIMBL$ - Tine slice counter

2C TIMERS - RTC counter [always precedes Tl MES]
2D 2F TIMES - Tinme string storage area

30- 32# RST 48 - DEBUG cal | address

33-37* DATE$ - Date string storage

38- 3A# RST 56 - Maskabl e interrupt vector

3B* OBRLS$ - DOS rel ease nunber

3C INTIMS - Interrupt latch i nage

3D I NTMBK$ - NMask for | NTI Mp

3E-4D INTVCS - Table of 8 interrupt latch vectors
4E- 65* TCBVT$ - Table of 12 interrupt task vectors
66- 68# NM VCT - Non-naskabl e interrupt vector

69* O/RLY$ - Qurrent systemoverlay resident

6A- 83* FLAGSS - 26 systemflags [A-Z] in order

84* SVCTP$ - SVC tabl e hi-order byte pointer

85* OBVER$ - (perating system version

86- 88* @ONG - Initialization configuration vector
89- 8B* @ TSK - Keyboard task vector

8G 9F SFOB$ - Systemfile control block

AD- BF DBGSV$ - DEBUG regi ster save area

- DF JFCB$ - JA. File Control B ock

EO- FF CFCB$ - Conand interpreter File Control Bl ock

8.7.2 Details of Low Menory Page 1

Byt es
00- FF*

Use
SVCTAB$ - 128 vectors for SVC s 0-127

8-19

8.7.3 Details of Low Menory Page 2

Byt es Use

00* BURS - Bank Used RAMi nage

01* BAR$ - Bank avail abl e RAM i nage

02* LBANK$ - Qurrently resident RAM bank

03- 05 JO.CB$ - Mni DCB for JO line input

06- 07* DVRHS$ - First available byte in I/Odriver region
08- OF* KIDCB$ - Keyboard Input Device Control Bl ock
10-17* DCDCB$ - Vi deo Device Control Bl ock

18- 1F* PRDCB$ - Printer Device Control Bl ock

20- 27* SIDB$ - Standard I nput Device Control Bl ock
38- 2F* SCDCB$ - Standard Qutput Device Control Bl ock
30- 37* JLDCB$ - Job Log Device Control Bl ock

38- FF* spare DCBs [25 of thenj

8.7.4 Details of Low Menory Page 4

Byt es Use

00 reserved

01 ZERCH - set to X 00

02- 0D MAXDAYS$- [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
OE- OF* H G5 - H ghest free address in user RAM
10- 1F reserved

20- 6F* I NBUF$ - Command |ine input buffer

70- BF* DCT$ - Drive Qontrol Tabl e records

Q- G5 reserved for use by system

Cr-DB DAYTBL - Days of the week [Sunhon.. .|

DG FF MCNTBL$S- Months of the year [JanFeb...]

8.8 MEMORY BANK SW TCHI NG

Thi s section discusses the techniques of using the @ANK SuperVisor Call. The control of
an assenbl y-coded application operating in a menory banked environnment requires a high
degree of skill in assenbly |anguage codi ng and should not be undertaken by the novice.
The professional is advised to carefully read the information contained in this section
whi ch di scusses how bank switching is supported within the operating system

The DO5 can support eight nultiple RAM banks of 32K each in addition to a resident 32K
bank. This brings the total RAM configuration to 288K The non-resident RAM banks are
desi gnated as banks zero through seven. The 32K of bank zero (generally considered as
"high nenory”) and the resident 32K are considered the standard 64K of the D05 Banks one
through seven may be used for buffers or data storage. Through sophisticated techniques,
they can even be used to store executable code. An entire bank is reserved for a
particular function. The systemnaintains a pointer (HGH) for bank 0 only. At any one
time, only one of the banks are resident. Al are imaged at address X 8000' through
X FFFF . Wien a bank transfer is perforned, the specified bank becomes addressable and
the previous bank is no longer available. Since menory refresh is performed on all banks,
nothing in the previously resident bank is altered during whatever tine it is not
addressabl e (i.e. not resident).

The DO5 provides support in accessing this additional RAM by neans of the @BANK
SuperVisor Call (SVG102). Let's take a look at how this RAM is handled. Wen the
operating systemis booted, it exam nes what banks of RAM are installed in the nachine.
The DO5 maintains a byte bit-nmap with each bit representing one of the banks of RAM This
byte is called "Bank Available RAM (BAR, and its information is set when the D5 is
booted. BAR bit-0 corresponds to bank 0, BAR bit-1 corresponds to bank 1, and so on to
BAR bit-7 corresponding to bank 7. A nachine may have only one bank, bank O.

Another byte bit-nmap is used to indicate whether a bank is reserved or available for use.
This byte is designated the "Bank Used RAM (BUR. Again, a bit assignment corresponds
one-for-one with the bank nunber. The nanagenent of any nenory space within a particul ar
bank of RAM (excluding bank 0) is the sole responsibility of the application program
"reserving" a particular bank.

The DOS 1/0O device handler will always enabl e bank O upon execution of any character 1/0
service request (@UI, @EI, @ITL, as well as those other character I/O SVCs that use
@UT/ @ET/ @TL). The DO5 al so enables bank 0 at the initial entry to the task processor
and when a disk 1/0O communications function is requested. This requires that any device
driver or filter that is relocated to high menory (X 8000 -X FFFF) nust reside in bank
0. The same holds true for interrupt task routines and disk drivers/filters. The system
provides this restriction to make sure that any filter, driver, or task routine that
control passes to wll be occupying enabled RAM nenory. If a RAM bank other than 0 was
resident during these operations, it would be restored upon return from the
devi ce/drive/task handler. The limtation will ensure that device I/Q task processing,
and disk I/Owll never be inpacted due to bank sw tching of RAM by an application.

Another restriction requires that the stack pointer (SP) is not pointing to an adddress
above X 7FFE when a bank transfer is requested. This is because that stack range woul d
have pl aced the stack in the menory region that is being swapped t hereby naki ng the stack
contents erroneous. The @ANK SVC will inhibit the request and return an "SVC par aret er
error” if this condition is violated. It is acceptable for an interrupt task, filter
nmodul e, or driver that is located in the bank sw tched address range to perform a bank
transfer to another bank provi ded the necessary |inkage and stack area is being utilized.
This will be discussed later in nore detail.

Al bank transfer requests nust be performed using the @ANK SVC This SVC provides five
functions - four of which are interogatory in nature. Onhe of the functions perforns

8-21

actual bank switching. As previously discussed, the contents of banks other than 0 are
managed by the application - not the DO5. Therefore, the application first needs a way of
ascertaining the availability of any given bank. For instance, if an application wants to
reserve use of bank 1, it rust first check if bank 1 is free to use. This is achieved by
using function 2 as fol |l ows:

LD C1 ; Specify the bank #
LD B, 2 :Ck BUR i f bank-in-use
LD A, @ANK ;ldentify the SVC
RST 40

JR NZ, | NUSE ;NZ if in use already

Astute programmers will recognize that the first two instructions could be conbined to
formone instruction as:

LD BC 2<8. (R 1

and save one-byte of code; however, for the sake of clarity in denoting the @ANK
function codes, all renmaining illustrations will use distinct instructions. Note that the
return condition (NZ or 2) is entirely satisfactory for ascertaining whether or not you
can use the specified bank or if it is not available for use. The accunul ator contains no
error code.

If you gain the availability of a specified bank, you then need to reserve it. This is
done by using function 3 as foll ows:

LD C1 ; Speci fy bank-1

LD B, 3 :Set BUR to show in-use
LD A, @ANK ;ldentify the SVC

RST 40

JR NZ, ERRCR

You nust check for an error by examning the Z-flag. In general, discounting a system
error, an NZ condition returned neans that the specified bank is already in use. In fact,
if you had validly performed a function 2 (testing if the bank was available) and
obtained a "not-in-use" indication but obtained an NZ condition on function 3, the @ANK
SVC service routine has been altered and is nost |ikely unusabl e.

Before actual bank switching is explained, let's look at one nore function. Wen an
application no | onger requires a nenory bank, it can return the bank to a "free" state by
neans of function 1. This is coded as foll ows:

LD C1 ; Speci fy bank-1

LD B, 1 :Set BUR to show free
LD A, @ANK ;ldentify the SVC
RST 40

No return code condition is checked as none is supplied by the DO5. In the unlikely event
that you mstakenly invoke function 1 with a bank that is non-existent, you wll still
get an error if you try to later enabl e the non-exi stent bank

If you need to ascertain what bank is resident at any point in time, use function 4 as
fol | owns:

LD B, 4 :What bank's resident?
LD A, @ANK ;ldentify the SVC
RST 40

The current bank number will be returned in the accumulator. This infornation nay be
useful prior toinstalling a driver/filter/task modul e into bank O.

8-22

The nore conpl ex bank function is function 0. This request is used to actually exchange
the current bank with the specified bank. A very inportant point to renenber here is that
since a menory transfer will take place in the address range X 8000 to X FFFF , the
transfer cannot proceed correctly if the stack pointer (SP) contains a value that places
the stack in that range. In fact, @ANK wll inhibit function O and return an SVC
paraneter error if the stack pointer violates the condition.

A bank can be used purely as a data storage buffer. Mst likely, the application s

routines for invoking and indexing the bank switching will reside in the user range
X 3000 through X 7FFF (or possibly in the 1/O driver range). As an exanple
illustration, the followi ng code will invoke a previously tested and reserved bank (via

functions 2 and 3), access the buffer, and then restore the previous bank:

LD C1 ; Speci fy bank-1

LD B, 0 ; Bring up bank

LD A, @ANK ;ldentify the SVC
RST 40

JR NZ, ERRCR ; What ever error trap
PUSH BC : Save ol d bank data

&/our code to access the buffer region

PCP BC : Recover ol d bank data
LD A, @ANK ;ldentify the SVC
RST 40

JR NZ, ERRCR ; What ever error trap

Note that the @ANK function O conveniently returns a zero in register B to effect a
function O later, as well as provides the old bank nunber in register C This neans that
you only have to save register pair BC pop it when you want to restore the previous
bank, and then issue the @ANK SVC.

Say you have a need to transfer to another bank froma routine that is executing in high
nmenory. Can this be done? Notice that the only limtation di scussed was that the stack
must not be in high menmory. The @ANK SVC function O does provide a technique for
automatically transferring to an address in the new bank. This technique is termed the
transfer function. It relies on the assunption that since you are managi ng the 32K bank,
your application should know exactly where it needs to transfer (i.e. where the
application originally placed the code to execute). The code to perform a bank transfer
is simlar to the above. Register pair H. must be loaded with the transfer address,
Register C which contains the bank number to invoke, nust have its high order (bit-7)
set to indicate the TRANSFER activity. After the specified bank is enabled, control is
passed to the transfer address that was in H.. Upon entry to your routine in the new bank
(we will refer toit as "PROGRAMB"), register H.L will contain the old RETurn address so
that PROGRAMB will know where to return to when it transfers. Register C wll also
contain the old bank nunber with bit-7 set and register B will contain a zero. This
register setup will provide for an easy return to the routine in the old bank that
i nvoked the bank transfer. Anillustration of the transfer code is as foll ows:

LD C1 ; Speci fy bank-1
LD B, 0 ;Bring up bank 0
LD H., (TRAADR :Set the transfer address
SET 7,C : & denote a transfer
LD A, @ANK ;ldentify the SVC
RST 40
RETADR JR NZ, ERRCR

Control wll be returned to "RETADR' under either of two conditions. If there was an
error in executing the bank transfer (for instance an invalid bank nunber or the stack
poi nter being in high menory), the returned condition will be NZ If the transfer took
pl ace and PROGRAM B transferred back, the returned condition will always have the Z-fl ag

8-23

set. Thus, the Z-flag will be indicative of a problemin effecting the transfer. If, by
chance, PROGRAM B needs to provide a return code, it nust be done by using register pair
DE, IX or 1Y, as registers AF, BC and H. are used to perform the transfer (or sone
ot her technique such as altering the return transfer address to a known error trapping
routine).

PROGRAM B shoul d contain code that is very simlar to that shown earlier. For exanple,
PROGRAM B coul d be:

PRO®B PUSH BC : Save ol d bank data
PUSH H : Save the RET address

&/our PROGRAM B rout i nes

PCP H : Recover transfer address
PCP BC ;Get bank transfer data
LD A, @ANK ;ldentify the SVC

RST 40

JR NZ, ERRCR ; What ever error trap

PROGRAM B saves the bank data (register BC). Don't forget that a transfer was effected
and register C has bit-7 already set when PROGRAM B i s entered.

PROGRAM B al so saves the address it needs to transfer back (which is in H). It then
perforns whatever routines it has been coded for, recovers the transfer data, and issues
the bank transfer request. As explained earlier, an NZ return condition from the @ANK
SVC indicates that the bank transfer was not performed. A recommendation is to verify
that your application has not violated the integrity of the stack where the transfer data
was stored.

Never place disk drivers, device drivers, device filters, or interrupt task service
routines in banks other than bank-0. It is possible to segment one of the above nodul es
and pl ace segnents in banks 1 through 7 provided the segnent containing the primary entry
is placed in bank 0. Al three types of divisions are incorporated into the systems
spool er with transfer between segnents bei ng acconplished by the bank transfer techni ques
di scussed above.

It sonetimes is necessary to transfer a page of nemory fromone bank to another. This can
only be done in one of two ways. Ether a character(s) at a tine is passed in a
register(s) or a page buffer bel ow X 8000' is used. The systemuses the |ast page of the
system overlay region (X 2300'-X 23FF) as an overlay buffer (except for SYS5/SYS which
loads into the region). This buffer is generally available for use as a page transfer
buffer. Do not use this location if your nmenory transfer routine is a background task or
is using the RAM bank as a di sk cache buffer.

8.9 | NTERFACI NG TO @I TSK

Consider for a noment that disk 1/O can not take place during an interrupt task. How then
can we wite "background" routines that performdisk I/O? The systemprinter spool er does
its despooling function as a background task. If we cannot perform disk 1/0O during
i nterrupt tasks, how can we despool ? V& achi eve this by being able to i nvoke a background
task in a way that does not depend on the interrupt task processor. A function frequently
requested in alnmost every application is that of obtaining characters fromthe keyboard.
If we can "hook into" this keyboard request, we can execute a task every time the
keyboard is scanned. For those tasks that require disk I/Q we can nake use of this
keyboard task process.

At the beginning of the system keyboard driver code is a call to @ TSK This neans that
any time that @BD is called, the @ TSK vector is likew se called (actually, the type-

8-24

ahead interrupt task bypasses this entry to inhibit calling @ TSK from the interrupt
routine). Therefore, if you want to interface a background routine that does disk 1/Q
you must chain into @l TSK

The interfacing procedure to @ TSK is virtually identical to that shown for Boot
Initialization 1ONFG Interfacing (except that FLAGS+31 through FLAGS+33 is used to
reference the @I TSK vector) and will not be repeated here. For the sake of clarity, you
may want to wite your background routine to start with:

START CALL RQUTI NE ;I nvoke task
LI NK DB ' Roy' : For @ TSK hook
ROUTI NE EQU $;Start of the task
RET
Now that the procedure has been denonstrated, be aware of one major pitfall. The @BD

routine is invoked from @WND and @MWMDR which is in SYS1/SYS. This invocation is from
the @EYIN call which fetches the next command line after issuing the "DO5 Ready"
nmessage. |f your background task executes and opens or closes a file (or does anything to
cause the execution of a systemoverlay other than SYS1), then SYS1 will be overwitten
by that system nodule handling your request). Wen your routine finishes, the @EYIN
handler returns to what called it - which was SYSL. Unfortunately, SYS1 is no |onger
resident. You have just crashed the system

ANY TASK CHAI NED TO @l TSK WH CH CAUSES
A RESI DENT SYS1 TO BE OVERWR TTEN MJUST
RELQAD SYS1 PRI CR TO RETURN NG

Ckay, how do you acconplish this wthout knowi ng system code (point of information: if
you are witing background tasks, you are witing systemsupport code!)? You will be able
to use the following code to reload SYS1 if SYS1 was resident prior to your task's
executi on.

RQUTI NE LD A, @LAGS ; Get flags pointer
RST 40 ; intoregister 1Y
LD A (1Y-1) :Plu resident over-
AND 8FH ; lay and renove
LD (A.DsYs+H1) , A ; the entry code

Rest of your task
EXT EU $

ALDSYS LD A0 ;Plu ol d overlay #
cP 83H WS it SYS1?
RET NZ cReturn if not el se
RST 40 ;Get SYS1 per reg A

; (no RET needed)

Another nethod is to determne if the keyboard request originated from the comand
interpreter. Wile the command interpreter is fetching its command line via @EYIN, it
sets hit-2 in the OFLAGS (see @LAGS SuperVisor Call). Thus, if your KITSK routine
di scovers that bit set, then the command interpreter originated the line input. If you
cause the systemto |oad sone other overlay into the systemoverlay region, it is your
responsibility to restore SySi!

8-25

8. 10 SYSTEM DI SK BOOT' TRACK

The operating system goes through a conplicated process to bring itself to a "ready"
state. This process is known as BOOTING Al inplenmentations of the DOS require that the
machine contain a small routine in Read Only Menory called the BOOT ROM The operati ng
systemuses the first two sectors of track zero of the systemdisk to contain BOOI code
needed to bring up the system The BOOT ROM has the small job of reading either the first
or second sector of track zero, the BQOl track. The track contains a core-image file
called BOOI/ SYS. The sector that is read contains code which, in turn, reads the entire
BQOI/ SYS file into low nmenory starting at nermory page 2. The BOOI/SYS file occupies 16
sectors of track zero. Thereafter, BOOI/ SYS | oads the resident systemfile, SYSO/SYS, and
transfers control to it. SYSO/SYS contains additional code which perforns further system
initialization. This includes |loading the first two pages of menory (page O and page 1),
loading any system configuration file (CONFIGSYS), and executing any AUTO comrand.
Because of this process, part of low nenory is loaded directly from the BQOOI/SYS file
contained on track O while other parts of |ow nmenory are | oaded by SYSO/ SYS.

The BOOI/SYS file contains two things of linted inportance to programmers. First,
BQOI/ SYS contains a pointer to the cylinder which holds the disk's directory. Second, the
BQOI/ SYS contai ns systeminformation in one of its sectors called the SYSTEM | NFCRVATI ON
SECTCR It is necessary to discuss only these two itens.

The D RECTCRY CYLINDER PANTER is a one-byte pointer that exists as the third byte of
both sector zero and sector one. Both |ocations store this information in order to be
nedia conpatible across various inplementations of the operating system Hard disk
formatters that performtheir own initialization of the directory cylinder nust store the
| ogical cylinder nunber of the directory in these two pointers. The pointer is the only
byte of the first two sectors that requires attention.

The SYStem INFQ nation sector (SYSINFO is sector two of track zero. It contains various
pi eces of systeminformation as foll ows:

Byt es Use
00 perating systemversi on used when formatting the disk. This nunber is in
hexadecinal (i.e. X 60", X 61', etc...)

01 Configuration byte to specify if a booting disk contains a QONFI G SYS
file [X 3 =NQ X 00" =YES

02-1D | MAXDAYS [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

OE-OF | reserved

10-17 | D sk Pack nane - sane as in QGanule Allocation Table

18-1F | D sk Pack date - sane as in QGanule Al ocation Table

20-6F | 80-character storage area for the AUTO command. This neans that the AUTO
command buffer on the disk loads directly into | NBUF$ by the BOOT | oader.

70-BF [Drive Control Table (DCT) records.

Q D sk type (systeneX FF , data=X 00')

Cl reserved

(o7 System BOOT date pronpting [X 00" =YES, X FF =NJ

G System BOOT tine pronpting [X 00" =YES, X FF =NJ

[07] System BOOT floppy disk restores [X 00=NQ X FF =YES]|
C5 reserved

[€5] reserved

C7-DB | Days of the week [Sunhbn...]

DG FF | Months of the year [JanFeb...]

8-26

8.11 SYSTEM OVERLAY CONTENTS

A system as conplex and flexible as LDOS woul d occupy considerable nemory space to be
able to provide all of its features. The D35 however, nakes extensive use of overlay
segnents in order to mnimze the anount of nmenory reserved for system use. The
conpromze in using an overlay driven system is that while a user's application is in
progress, certain disk file activities requested of the systemnay require the operating
systemto load different overlays to satisfy the request. This coul d cause the systemto
run slightly slower than a | ess sophisticated system which has nore of its file access
routines always resident in nmenory. The system provides a procedure to permanently pl ace
specified overlays into nemory to enhance the overall speed of operation (see the SYSTEM
command) .

The following wll describe the functions performed by each system overlay. Nunbers in
angl e brackets represent the system SVC entry.

8.11.1 SYSO/ SYS
This is not an overlay. It contains the resident part of the operating system (SYSRES).

8.11.2 SYS1/SYS

This overlay contains the coomand interpreter. This processes @MD <X B3'> and @MDR
<X A3'>. It contains the routines for processing the @EXT SVC <X D3'>, the routines for
processing the @SPEC SVC <X C3'> and the routines for processing the @ARAM SVC
<X B3> It also contains the @X T processor <X 93' >

8.11.3 SYS2/SYS

This overlay is used for opening <X 94'> or initializing <X AM'> disk files and | ogi cal
devices. It contains the functions for @ENAM <X F4'> and @IDCB <X B4'> It also
contains the @KDRV routines <X C4'> and routines for hashing file specifications
<X D4' > and passwords <X E4' >.

8.11.4 SYS3/SYS
This overlay contains all of the system routines needed to close files and devices
<X 95> |t also contains the routines needed to service the @NAME SVC <X A5' >.

8.11.5 SYS4/SYS
This system overlay contains the system error dictionary and @RRCR SVC processing
routines.

8.11.6 SYS5/SYS
Thi s overlay contains the system debugger.

8.11.7 SYS6/SYS

This overlay contains all of the algorithns and routines necessary to service the LIBrary
commands identified as "Library A" by the LIB coomand. The following list identifies the
commands and their ISAMentry nunber.

21 DR 63 RESET 53 RENAME
61 DEM CE 65 SET 1E MEMRY
32 CCPY 66 FILTER 91 DO

31 APPEND 41 LI ST 81 LQAD
64 ROUJTE 18 REMOVE 82 RN
62 LINK 19 LIB

8.11.8 SYS7/SYS

This overlay contains all of the algorithns and routines necessary to service the LIBrary
commands identified as "Library B' by the LIB coomand. The following list identifies the
commands and their ISAMentry nunber.

8-27

14 DEBUG 72 PURCE

1B VER FY 71 DUWP
15 DATE 13 CREATE
16 TI ME 11 AUTO
22 FREE 33 BULD
51 ATTR B

8.11.9 SYS8/SYS

This overlay contains all of the algorithns and routines necessary to service the LIBrary
commands identified as "Library C' by the LIB coomand. The following list identifies the
commands and their ISAMentry nunber.

Al SYSTEM
1C SYSGEN
Bl FCRVS
B2 SETCOM
B3 SETKI
A2 SPOCL

8.11.10 SYS9/ SYS
This overlay contains the routines necessary to service the EXTended debuggi ng comrands
avai l abl e after a DEBUG (EXT) is performed.

8.11.11 SYS10/ SYS
This systemoverlay contains the procedures necessary to service the request to REMOE a
file <X 9C >.

8.11.12 SYS11/SYS

This overlay contains all of the procedures necessary to performthe Job Control Language
executi on phase. These are the initial entry for setup and initialization <X 9D >, the
revised @XT processor <X AD > keyboard request processing <X CD > and //INPUT
keyboard processing <X DD >.

8.11.13 SYS12/ SYS
This overlay contains the routines to service the @GRAMI R <X 9E > and the @ R <X AE >
SuperVisor Calls. It also includes the routines to service the @IMD function <X BE >.

8.11. 14 SYS13/SYS

Effective with release 6.2.0, SYS13 can be used by an application environnent for an
Extended Command Interpreter (ECQ). This EA gains control from SYS1 on any of the
follow ng SVGCs: @BORT, @WND, @WMDR and @X T. The programrer develops the EA and
copies it to the application systemdi sk SYS13/SYS nodul e via the comrand:

QCPY usereci SYS13/SYS. LSIDGS: d (C=N

The programmer then sets the EFLAGH and i nvokes SYSGEN to save the EFLAGH configuration.
Woon entry to the EAQ, the registers will be set as for any other program execution (see
page 6-100), with the exception of register A Bits 4-6 of the accunulator will contain
an image of the respective EFLAGP bits. The EQ progranmer rmay use different BEFLAGH
assignments in a multiple nodul e application environment to invoke the EQ with different
entry points.

8-28

8. 12 SYSTEM OVERLAY ACCESS

Practically all of the functions contained in the system overlays are accessed via
library commands or standard SuperVisor Calls. Ohly in a few unique cases is access to
overlay functions through the SYSTEM SVC required. The two cases, calculating the file
specification hash code and the password string hash code, have been discussed. The
system functions provided in the overlays wll wusually have a standard SuperVisor Call
assi gned. These SVCs have been discussed in chapter 7. The systemtransl ates standard SVC
nunbers <0-127> within SYSRES to the overlay entry nunber in order to process the user
request. Although it is possible to directly access a function via its overlay entry
nunber or ISAM entry nunber, this should not be done. The standard SVC |inkage protocol
should be used to address the overlay functions since there is no guarantee that the
routines servicing the overlay functions will remain in the overlay presently assigned.

A user SVCrequest is via a RST 40 instruction which places the return address at the top
of the stack. Since the process to translate the user request to a systemoverlay request
also uses a RST instruction (to mninmze the length of the translation code), an extra
return address is placed on the stack. The SVC processor adjusts for this by popping the
extraneous return address when it is processing a system overlay request. The systems
request is easily identifiable since all systemrequest codes have bit-7 set. Because of
this, if a user requests a systemoverlay function directly, it is necessary to CALL the
RST instruction so that the return address that is kept on the stack is a pointer to the
address following the CALL instruction. Systemoverlays one through five and nine through
thirteen, can be loaded into the overlay region by means of the foll owi ng code:

LD A 8<4. OR #+2 ; The "#" represents the
CALL RST40 ; nunber of the overlay
RST40 %T 40 :Returns to what called this

For a specific exanple, in order to |oad SYS3/SYS, the accunulator will be |oaded with
the value, X 85 . Wen one of these overlays |oads, the last two bytes of the system
overlay region will be loaded with the length of the overlay. This information is used by
t he " SYSTEM (SYSRES)" command.

The library overlays, SYS6/SYS, SYS//SYS, and SYS3/SYS, are partitioned data sets. The
system locates the origin of individual nenbers by means of an |ISAM directory. The
directory contains an entry nunber, a NRNBYTE CGFFSET pointer, and a transfer address
(this is discussed in the appendix section, D SK LOAD MDULE FCRVAT). Wen the command
interpreter recognizes a library coomand request, it obtains the 1SAM entry nunber from
its table and issues a system overlay request. The |ISAM entry nunber is placed in
register B while the accumulator contains the corresponding overlay |oad code as
di scussed in the preceding paragraph. Again, since it is possible for the nenbers to be
located in a different overlay in the future, the proper nethod to invoke a library
overlay nenber is via an @WM\DR or @M\D SuperVisor Call.

8-29

8. 13 USI NG @PARAM

The @ARAM SuperVisor Call is used in practically all D05 library commands and utilities
as well as filters, drivers, and |anguages. Since you are already famliar with the D05
commands, you shoul d recogni ze the wi de range of input syntax parsed and interpreted by
@ARAM The SVC is used to decode TRUE FALSE paraneters (by either entering or not
entering a paraneter word), YESNO paraneters (by using PARVEY or PARVEN, ONCGF
paraneters (by using PARVEON or PARMECFF), decinmal values (by entering PARMEddddd),
hexadeci mal val ues (by entering PARMEX xxxx'), and character string val ues (by entering
PARVE"characterstring"). Paraneter entries can be made in either upper case or |ower case
- even with hexadecinal digits (AF equally acceptable as a-f).

The system parses a conpl ex parameter string that may be conposed of many paraneters -
each separated from the other by a comma. The interpreted entries are passed back to
@ARAM cal l er according to the parameter table designed by the programmer. Version 6
supports two types of paraneter tables. The first type is the fixed w dth tabl e whi ch was
supported under Version 5.

The second type is a variable width table that supports additional information. In the
following discussions, we will first illustrate the former table. You shoul d have al ready
read the information in chapter 7 covering the @ARAM SuperM sor Cal |.

Let's assume we have an application that offers the user varying options to set up the
function of the application. In BASIC this nay be the nunber of files or protected
nenory size. In BACKUP, this may be the diskette nmaster password or date range of files
to select. In SETOOM this may be whether CIS is to be honored. How do we get this
information to the progran? VW could pronpt the user by a pronpt nessage for each and
every paranmeter that needs to be determ ned. Experienced users soon get tired of pronpts.
I nexperienced users get extremely frustrated when the system requires an inflexible
syntax for the entry of options. How can everyone be satisfied - fromnovice to expert?
Wy, by using @PARAM

V¢ will propose a hypothetical application requiring the determnation of five options:

1. Alength field used in ascertaining the nunber of print colums of output. This
shoul d default to 80 to denote an 80 colum printer if no entry is made. The
range should be limted to 32-255.

2. A nodule specification field to indicate whether line feeds are to be added
after carriage return, renoved after carriage return, or no checking is to be
per f or med.

3. Atitle field to be placed on each page of output. In addition, paging is to be
suppressed if no titling is desired. Furthernore, the default is to incorporate
pagi ng unl ess ot herw se specified by the user.

4. A pronpting specification to note whether pronpts for changing paper are to be
made at the appropriate tine if sheet paper is used or omtted if tractor feed
paper is used. The default shoul d be no pronpting.

5. Atranslation option for converting a character on output. This shoul d default
to no translation.

The first thing required by the systemdesigner is to designate "words" for the comrand
line paraneters. They should be chosen to be as easily renenbered as possible. They
should be greatly correlated in definition to the function they are specifying.
Additionally, abbreviations should be considered in addition to the full "word". Thought
shoul d be given to using words whose first character is different for each parameter so
as to provide single character abbreviations. However, if any paraneter is ommi potent,
care shoul d be exercised in designating an abbreviation.

8-30

In the exanple above, we wll choose LENGIH FEED, TITLE, PROWT, and XLATE paraneter
words for the options 1-5. VW will also abbreviate these as L, F, T, P, and X Your
application's docunentation nust fully explain the purpose of the paraneters. A typical
command line entry coul d be:

URPROG (| engt h=132, ti t| e="Program Qui de", x| at e=x' 0e00")
The comrand |ine could just as easily have been entered as:
URPROG (t="Program Qui de", x=x' 0e00' , | =132)

Note that not only are abbreviations used, but the order of appearance in the command
line is irrelevant. A so note that parentheses enclose the comrand |ine paraneters;
however, the closing parenthesis is not required. You can take sone liberties with the
string and hexadeci mal syntax. Hexadecimal entries can drop the closing single quote.
Strings are considered termnated by any value |ess than SPACE Thus, a closing carriage
return validly ternminates a string. This |leeway permts entry of such command |ines as:

URPROG (t="Program Qui de
URPROG (x=x' 0e00, t =" Progr am Qui de

You' re saying there must be a catch. How can @ARAM do all that? Easy - you nust follow
sonme rules and inplenent some coding in your program Not very much coding is required,
t hough. Wen you execute a comrand |line, the comrand interpreter is activated (@WD).
If a LIBRARY nane is specified, the systemis library nodule is activated. If a program
nane is entered (the systemfirst tries a default extension of /OVMD if the user does not
supply one) the programw |l be |oaded and transfer will be performed to the programs
transfer address which is located at the end of the |oad nodule (follow ng the X 0202').
Wen control is passed to the program register pair H. contain the address of the first
non- bl ank character follow ng the program name entered. If @ARAMis requested, it wll
search the command line for a paraneter string | eft parenthesis starting fromthe address
pointed to by H.. It wll ignore blanks while it looks for the "("; however, if it finds
a non-blank character other than "(", it wll imediately return. If there are going to
be additional entries, such as file specifications, on the comrand |ine preceding
possi bl e paraneters, these nust be parsed first by your program before issuing the @ARAM
SVC

The prol ogue of URPROG mght go sonething like this:

URPROG PUSH H ; Hang on to | NBUF$ poi nt er
LD H., HELLGS ; Point to hell o nessage
LD A, @SPLY ;D splay message to screen
RST 40
PCP H ; Recover | NBUF$ poi nt er
LD DE, PRVITBL$; Point to paranmeter table
LD A, @PARAM ; G parse all of the parns
RST 40

JP NZ, PRVERR ;@ to error handler if bad entry
. : The rest of URPROG

HELLCS D3 10,' Sone friendly nmessage', CR
-k —k =%

; This is the parameter table. Note its entries are

; all 6-characters in width. The address specified by
; the paraneter vector follows each parameter "word".
; In addition, the table is ended with a zero byte.

* —k =%

PRVIBL$ DB ' LENGTH ; Lengt h par anet er
DW LPARMF1
DB "L '

8-31

DW LPARMH1

DB '"FEED ' ; Line feed paraneter
DW FPARM-1

DB '"F '

DW FPARM-1

DB "TITLE ' ; Titl e paraneter
DW TPARW1

DB 'T '

DW TPARW1

DB ' PROWPT ; Pronpt par anet er
DW PPARM-1

DB 'P '

DW PPARM-1

DB ' XLATE ' ; Transl at e par anet er
DW XPARW-1

DB "X '

DW XPARW-1

NCP ;This is the ending zero byte

The PRMIBL$ is going to be structured simlarly for all tables. The convention used of
specifying the address vector as "LABEL+1" wll beconme immediately obvious once you
inspect the method of using the result in URPROG As an aside, let's look at two
conventions of referencing the second byte of a three-byte instruction.

METHCDL LD (LABEL+1), H. :Load HL into the "nn" field
LABEL i_D BC, 0 :Plu the val ue | oaded
METHCD2 LD (LABEL), H_ :Load HL into the "nn" field
i_D BC 0 :Plu the val ue | oaded
LABEL EQU $-2 ;The "nn" field is 2-bytes back
The first method will be used to illustrate paraneter table vector addresses in this

appendi x section. Use the method you are nost confortable with. It is suggested that you
choose one techni que and use it exclusively throughout a program Qherw se you will find
yoursel f getting into trouble as you forget which nethod you were using.

Now that the @ARAM system function has parsed the entered command line, how do we
utilize the "values" it interpreted while still supporting our defaults and conditions?
Véll, bear in mnd that if the user has not entered a paraneter word, nothing wll be
entered by @ARAMinto the address vector specified by the paraneter table. Therefore, an
initial condition can be supplied in the coding. Also, the initial value coded wll be
dependent on just what condition you want the default to be. Let's see how this would
wor k.

:Sonme front end code

* —k —%
; Here is where we pick up the length paraneter. Note
; that it isinitialized to 80 if there is no user entry
—% —%
LPARM LD BC, 80 ;Pick up the entry
I NC B : Test hi-order for zero
DEC B ;1t must be zero for range check
JP NZ, LBAD ;Bad length i f range >255
LD A C ;Plu the lo-order length

8-32

* =k =%

* =k =%

cP 32 :Must be >= 32
JP C LBAD ;Bad length i f range < 32

The length paraneter has been tested for proper range.
It can be used i n URPROG where needed by either stuffing
the accunul at or where needed or by picking up the val ue
later by a "LD A (LPARW1)" instruction.

Here is where we pick up the line feed paraneter. Based
on the conditions specified, we need a three-way test.
Wiat has to be ascertained i s whether the user specified
FEED=ON, FEED=CFF, or didn't even enter FEED. The QV CFF
entries are the same as TRUE FALSE specifications and
result ina-1/0 value respectively (ON= -1, GFF = 0).
V¢ therefore nust define a default value which is

nei ther 0 nor -1.

LD BC 1 VW will use a "default" of 1

LD A B ;Merge the hi and |l o orders

R C

JR Z, RWFEED :Renmove line feed i f FEED=CFF

I NC A ;| f FEED=CN was specified, A=X FF
JR Z, ADDFEED : thus A would be zero after the INC

The line feed paraneter has now been handled. It is left
up to the reader to provide routines for RW and ADD FEED.

The title paraneter needs to default to ON per our
conditions. This would nean that if no Tl TLE was
supplied in the conmand line, the user woul d be pronpted
to enter it (user friendly). O string paraneters,
@ARAM Wi || 1 oad the address of the first character of
"string" into the vector address specified in PRVIBLS.
URPROG wi I | then have to parse the string until it finds
one of the string termnating characters.

LD BC -1 :Force the default to be Tl TLE=Y
LD A B ; Check on entry of T=N

R C ;Merge hi and |l o orders

JR Z, NOTI TLE ; To user provided routine

I NC A ;Check if T=Y or no entry

LD H_, PMTI TL$;Init pointer just in case

CALL Z, CGETI TLE ;G pronpt & get title if only T=Y

The CGETITLE routine woul d have to display the pronpt,
provi de an input neans, then place the address of the
first character of string into register pair BC

QG herwi se, reg BC already has the address of that char.

;Your routine for parsing the title
; character string bel ongs here.

The pronpt paraneter will be an easy one. Its default is
PROWPT=CFF and no ot her special conditions need be net.

8-33

* =k =%

PPARM LD BC 0 : Zero because the default is CFF
LD H., FLAGS ;Let's set a flag for this one
RES 0, (H) ;Init flag to of f
LD A C ;Only the | o-order is needed
R A ; Test the entry
JR Z $+4 ;Skip the next instruction if P=N
SET 0, (H) ;Set the flag if P=Y

* —k —%

The translation paraneter is the last one to retrieve.
In order to provide a default of no translate character,
the code will use a zero value for this test. It is
inportant to note that since the entry is a 16-bit

val ue, your docunentation nust clearly note which order
is the character to test. If in X xxyy', we denote "xx"
for the test character and "yy" its translated val ue,
then "yy" becones the | o-order byte when | oaded while
"xx" becomes the hi-order byte.

* —k —%
XPARM LD BC 0 :Note the zero default
-k —k =%
; That's all there is toit. W could, of course, test
; for an X 0000 value and set a flag to indicate no XLATE
; option entered. Then later test the flag first before
; checki ng on a XLATE natch. However, it woul d probably take
; just as long to test for the option as it would to
; test for the character so we will not use a flag.
-k —k —%
-k —k —%
; Here is sone code that could use the transl ate feature
; The character is in the accumul at or.
-k —k —%
LD BC, (XPARW-1) :Plu the test characters
cP B ;Transl ate this character?
JR Z $+3 1f match, use translate
LD CA ;. else use this character
LD DE, PRDCB$:Point to Device Gontrol Bl ock
LD A @UT ; and put the character
RST 40

Sonetimes, you may want to provide a paraneter that can be entered either as a decinal
val ue, a hexadecinmal value, or as a string value. For instance, if you want the user to
optionally assign a "separator” character which defaults to a semcolon, it would be very
friendly to accept any of the follow ng: [sep=X 3A, or sep=58, or sep=":"]. The decodi ng
can get involved. Wen the program is expecting a 16-bit value, if we would closely
i nspect the decoding of the paraneter entry, we would find that there is difficulty in
differentiating a string paraneter which returns a 16-bit address from a decinal or
hexadeci mal val ue. Another observation is that while the inclusion of abbreviations for
the parameter words is both recormended and desirable, it requires duplicate entries in
the paraneter table. These entries waste nenory space. The second paraneter table format
solves these problens. First, the system provides feedback as to the type of entry
contained in the paraneter command string: switch (yes/no, true/false, on/off), value
(16-bit decoded deci mal or hexadecimal entry), or string (start address and length). In
addition, each paraneter word can be a different length while single character
abbreviations are specified within the one table entry. Let's take a look at our
paraneter table if it were recoded into the second format.

8-34

VAL EQU 80H :Set value bit

SwW EQU 40H :Set switch bit
STR EQU 20H ;Set string bit
ABR EQU 10H : Set abbreviation bit
iDRMI'BL$ DB 80H :Indicate format 2
' DB VAL. CR ABR CR 6

DB " LENGTH ; Lengt h par anet er
LRESP DB 0

DW LPARW1
' DB SWCR ABR CR 4

DB ' FEED ; Line feed paraneter
FRESP DB 0

DW FPARW1
' DB STR OR ABR CR 5

DB "TI TLE ; Titl e paraneter
TRESP DB 0

DW TPARM-1
' DB SWCR ABR CR 6

DB ' PROWPT ; Pronpt par anet er
PRESP DB 0

DW PPARM1
' DB VAL. (R STR (R 5

DB ' XLATE ; Transl at e par anet er
XRESP DB 0

DW XPARM1

NCP ;This is the ending zero byte

Wen the @PARAM service function conpletes its parsing and interpreting of the paraneter
command string, the response byte corresponding to paraneter entries will be altered
according to any entry parsed. Thus, your program can incorporate code to test the
response byte to determne the exact type of entry nade in the paraneter line. By
conparing the response byte to the control byte, the program can ascertain the validity
of the entry. It is left for the reader to adjust the decoding routines according to
table format 2.

8-35

8. 14

TRAP Filter Illustrated

; TRAPFASM- Filter to trap a single character - 07/31/83

* =k =k

@LACSS

BEG N

CPARM

aam ' <Copyright 1983 by Roy Soltoff>'

This FILTERw || trap a single character
as specified by the coomand line entry.

A single byte to trap can be passed in the

command line as a parameter. If not entered,
it wll default to X OE, the infamous cursor
on character which if sent to a printer, wll
cause expanded character node on a | ot of dot
matrix printers if CURSCR ONis sent to *PR

To filter the printer output, issue:
SET *TP to TRAP (CHAR=dd)
FILTER *PR using *TP

10 ; Line feed
13 ;Carriage return

I X ;Get DB pointer into I X

(MODDCB), DE ; Stuff DCB poi nt er

H ; Save command line ptr
H., HELLG$

A @SPLY ;Display hello

40

H ; Revr command line ptr

38555538 BERBBBEE

Check if entry from SET comrand

LD A FLAGSS ;Get flag pointer
RST 40

BIT 3,(lY¥ C-"A) ;Systemrequest?
JP Z, V1 ASET

LD DE, PRMIBL$;Point to paraneter table
LD A @GPARAM ;Get parns if any

RST 40

JR NZ, PRVERR

LD BC 14 ;Init to X OE

LD A (CRESP) ; Plu the response

R A ; &seeif any entry
JR Z, CDEFLT ;Default if none

BIT 7,A ; Val ue entry?

JR Nz, CDEFLT ;Value isinreg C

BIT 5A ;String val ue?

JP NZ, PRVERR ;Error if anything el se
LD A (BO ; BC contai ns a pointer
LD CA ;Shorter than a junp

LD AC ; Xfer the value to reg A
LD (TRAPBYT+1) ,A ; & stuff infilter

install new HGH5 and nove filter code

LD H,0 ;Get current HGH
LD B L

LD A @ GB

RST 40

JR NZ, NOVEM

LD (ADH),H ;Put in filter header

Move nodul e into nenory

8-36

M ASET

START

TRAPBYT

QUTP1

RX01

LENGTH

LD

LD

LD
LD

o8

528888 B888 A

Act ual

JR

CE, HL ;Destination address to DE

H_, MODDCB- MCDEND

H., DE ; Rel ocat e one address
(RX01), HL

H_, MCDEND ; Last byte of nodul e

BC, LENGTH ;Length of filter

DE H ; Move new HGHS to H-

A @G ;Set new HGHb into the system
40

;Bunp to filter entry
(1 %+0),40H R 7 ; Stuff TYPE byte
(IX+1), L
(1 %+2), H ;Install addr into DOB
H,O0 ; Successful . ..

H,-1 ;I'ndi cat e extended error

LF,' TRAP filter to trap a character code',CR
'Bad paraneters!',CR

'"Hgh nmenory is not available!',CR

"Mist install via SET!'',CR

80H

80H OR 20H CR 10H CR 4

' CHAR ; Paraneter word
0 ; Response byte
CPARWF1L ; Storage address

; Tabl e end i ndi cat or

FILTER routine to shift up to HGH

START

$-3 ;HGH before filtering
MODDCB- TRAP- 5

' TRAP

$-$; Loaded wi th DOB poi nt er
0

Nz, QUTP1 ;@ if not PUT

AC

0 ; Space for trap char

z ;Back with Z & A=0 if trapped
I X ; Save current pointer

1 X, (MCDDCB) ;Plu this nodul e s DCB
$-2

A @HN O ;Chain to the next

40

I X

$- TRAP

BEG N

8-37

8.15 SLASHO Filter Illustrated

; SLASHO/ FLT - Version 6.0 - 05/27/83

RLCCP

aam

This fil

' <Copyright 1983 by Roy Soltoff>'

ter will provide slashed zeroes on

printers capabl e of accepting a backspace

3000H

DE

I X ; Get dcb

(MODDCB), DE ; Stuff DCB poi nt er
H., HELLG$

A @SPLY ;Display hello
40

Check if entry from SET comrand

LD
RST
BIT
JP

install

A GFLAGSS ; Get flags pointer
40

3,(lY¥C-"A) ;Systemrequest?
Z, V1 ASET

new H GH5 and nove filter code

H,O0 ;Get current HGHB

(ADH), H ;Put in filter header

Relocate internal references in driver

1Y, RELTAB ;Point to relocation thl
DE, MCDEND

A ;Aear carry flag
H., DE

B H ; Mve to BC

C

L (1Y) ; Get address to change
H (1Y+1)

AH

L

Z, RXEND

E (H) ; PP'U addr ess

H

D (H)

DE, HL ;Offset it

H., BC

DE, H

(H),D ; And put back

H

(H). E

Y

Y

RLOCP ;Loop till done

ver into high nenory

CE, (QLDH) ; Destination address
H_, MCDEND ; Last byte of nodul e
BC, LENGTH ;Length of filter

8-38

M ASET

START

QUTP1

RX01

RELTAB

EX DE, H ; Move new HGHS to H-
LD A A G ;Set new HGHB into the system
RST 40

I NC H ;Bunp to filter entry
LD (I X+0),40H CR 7 ; Stuff TYPE byte

LD (IX+1), L

LD (1 %+2),H ;Install addr into dcb
LD H, 0 ; Successful ...

RET

LD H., VI ASET$

DB ODDH

LD H., NOVEMB

@a-030T

LD H,-1

RET

DB LF,' SLASHO Filter'

DB '"Hgh nmenory is not available!',CR
DB "Mist install via SET!',CR

The SLASHO filter

JR START
DwW $-$

DB MCDDCB- SLASH 5
DB " SLASHY'

Dw $-$

DW 0

JR NZ, QUTPL

LD AC

P o

JR Z, QUTCF

PUSH IX

PUSH BC

LD I X, (MODDOB)
EQU $-2

LD A @HN O

RST 40

PCP BC

PCP I X

RET

Do the slashing

CALL QUTPL
EQU $-2

LD G 08H

CALL Z QUTPL

EQU $-2

LD Gl

JR Z, QUTPL

RET

EQU $- SLASH

DW RX01, RX02, RX03, 0
END BEG N

i

i

’
i
’
i
’

i

H GHb before filtering

Loaded wi th DCB poi nt er

G if not PUT

ASA | zero?

G if so

Save current pointer

Save in case affected downstream
P/u this nodul ' s DCB

Chain to the next

Put the zero

Backspace

Now put the slash
unl ess an error

8-39

8.16 DWVMP-500 BOLDFACE Filter Illustrated

; BOLDFACE/ ASM - FILTER to invoke bol df aci ng on DMP-500 - 03/ 20/ 83
TITLE '<DW-500 BOLDFACE Fil ter>'

*kkk Kk
This filter uses two trigger toggle characters to turn
on and of f the bol df ace nmode of the DWMP-500 printer.
ne character called TORAE (defaults to tilde) wll
toggl e on/of f bol df ace and output a space in lieu of
the toggle character. This is useful to naintain right
justification. The other character called NULL (defaults
to DELETE, X 7F) toggl es the bol df ace node but causes
no character to be sent in lieu of the toggl e character.
The bol df ace node is automatically turned off when a
carriage return (X 0D) is sensed.

* —k —%
aom ' <Copyright (©Q 1983 by M SCBYS>'
-k —k —%
LF EQU 10
R EQU 13
ESCAPE EQU 27
BCLDON EQU 31
BALDCFF EQU 32
@aiNoOo EQU 20
AGs EQU 100
@sPLY EQU 10
@LAGSS EQU 101
@ARAM EQU 17
@oxor EQU 12
aRG 3000H
BEGAN PUSH DE
PCP I X ; Gt DB into I X
LD (MODDCB), DE ; Stuff DCB poi nt er
PUSH H ; Save | NBUF$ poi nt er
LD H., HELLCB
LD A @SPLY
RST 40
PCP H ; Revr | NBUR$ poi nt er
-k —k —k
; Check if entry from SET comrand
-k —k —%
LD A FLACSS ; Get flags pointer into |Y
RST 40
BIT 3,(lY¥C-"A) ;Systemrequest?
JP Z, V1 ASET
LD DE, PRVITBL$; Gab any user parns
LD A, @PARAM
RST 40
JP NZ, PRVERR
;*—*—*
; Transfer requested TO3AE e/ w space to filter
-k —k —%
LD A (TRESP) ;Ckif any entry
LD B A
TOBLE LD H., 7EH ;Set default to TILDE
LD A (H) ; Plu assuned string
BIT 5B ;String entry?
JR Nz, TSTUF
LD AL ;Plu hex or dec entry
BIT 6,B ;Error if switch entry
JP NZ, PRVERR
TSTUF LD (TILDE1+1), A ;Stuff it in there
LD (TILDE2+1), A
;*—*—*
; Transfer requested toggle wo space to filter
-k —k —k
LD A (NRESP) ; &k if any entry
LD B A
NULL LD H., 7FH ;Set default to DELETE
LD A (H) ; Plu assuned string
BIT 5B ;String entry?
JR NZ, NSTUF

8-40

LD AL ;Plu hex or dec entry
BIT 6,B ;Error if switch entry
JP Nz, PRVERR
NSTUF LD (NULL1+1), A ;Stuff it in there
LD (NULL2+1) , A
;*—*—*
; install new HGH and nove filter code
-k —k —k
LD H,O0 ;get current HGH
LD B L
LD A @G
RST 40
JR Nz, NOVEM
LD (ADH), H ;put in filter header
-k —k —k
; Relocate internal references in driver
-k —k —k
LD 1Y, RELTAB ;Point to relocation thl
LD DE, MCDEND
XR A ;Aear carry flag
SBC H., DE
LD B H ; Mve to BC
LD C
RQOCP LD L (1Y) ; Get address to change
LD H (1Y+1)
LD AH
R L
JR Z, RXEND
LD E (H) ; PI'U addr ess
I NC H
LD D, (H)
EX DE, HL ;Cifset it
ADD H., BC
EX DE, H
LD (H),D ; And put back
DEC H
LD (H), E
I NC 1Y
I NC 1Y
JR RLOCP ;Loop till done
;*—*—*
; Move dri ver
sk ok ok
RXEND LD CE, (QLDH) ; Destination address
LD H_, MCDEND ; Last byte of nodul e
LD BC, LENGTH ;length of filter
LDDR
EX DE H ; Move new HGHS to H-
LD A A G ;Set new HGHB into the system
RST 40
I NC H ;Bunp to filter entry
LD (I X+0),40H CR 6 ; Stuff TYPE byte
LD (IX+1), L
LD (1 %+2),H ;install addr into dcb
LD H., 0 ; Successful . ..
RET
;*:*—*
; Error nmessage handling
;*:*:*
M ASET LD H., I ASET$;' Mist install...
DB ODDH
NOVEM LD H., NOVEMB ;' No menory!
DB ODDH
PRVERR LD H., PRVERRS ;' Paraneter error'
LD A @QQO30T
RST 40
LD H,-1
RET
;*—*—*
; Data area
: —k —%
HELLGS DB ' DMP-500 BOLDFACE Filter Version 6.0a - '
DB ' Copyright 1983 by Roy Soltoff',LF, CR
PRVERRS DB "Parameter error!',CR

8-41

'"Hgh menory is not available!',CR

VI ASET$ DB "Mist install via SET',CR
-k —k —k
; Parameter table
: * —k —%
PRVIBL$ DB 80H'R
DB OF6H ' TGGALE ; Toggl e on/ of f char
TRESP DB 0
DW TOEALE+1
DB OF4H ' NULL' ; Toggl e on/of f w o space
NRESP DB 0
DW NULL+1
NCP ;End of table
sk ok ok
; Entry point
sk ok ok
BALD JR START ; Branch around | i nkage
aH DW $-$; Last byte used
DB 7,' DWPBOLD
MDDCB DW $-$; Loaded wi th DOB poi nt er
DW 0
START JR Z, FILTER ;@ i f @UT
PUTQUT PUSH I X ; Save current pointer
PUSH BC ; Save in case affected downstream
LD 1 X, (MCDDCB) ;Plu this nodul ' s DCB
RX01 EQU $-2
LD A @HN O ;Chain to the next
RST 40
PCP BC
PCP I X
RET
FILTER EQU $
SWTCH LD A0 ; Plu switch
R A ;s flag on?
JR NZ, SW SON ;@ if switch is on
LD AC ;Is char a tilde?
TILDEL CP 7EH
JR Z, TONSPA ;G if got to turn on
NLLL P 7FH ; Turn on W o space?
JR Z, TURNCN
JR PUTQUT ; Send the char
-k —k —%
; Got a flag to turn swtch on/of f
-k —k —k
TURNON LD C BOLDON
JR TURNA
TURNCFF XCR A
LD C BOLDCFF
TURNA LD (SWTCH1), A ; Turn of f the switch
RX02 EQU $-2
PUSH BC ; Save toggle control code
LD C, ESCAPE
CALL PUTQUT ; Put the ESCAPE
RX03 EQU $-2
PCP BC ; Restore and PUT
JR puTQUT ; the toggl e code
TCOFFSPA CALL TURNCFF
RX04 EQU $-2
JR PUT_SPA
TONSPA CALL TURNON
RX05 EQU $-2
PUT_SPA LD c' ' ; Put space for tilde
JR pUTQUT ; and stuff a space
* —k —%
; Flag is on - what should we do?
-k —k —k

8-42

SWSON LD AC ;Do we close the switch?
TILDE2 CP 7EH

JR Z, TOFFSPA
NLL2 P 7FH ; Turn off w o space?
JR Z, TURNCFF
P R ; Turn of f on ECL
JR Nz, PUTQUT

RX06 EQU $-2

LENGTH EQU $-BALD
RELTAB DW RX01, RX02, RX03, RX04, RX05, RX06, 0

END BEA N

8-43

@
@BORT.......... 7-2, 7-4, 7-8, 7-10, 7-19, 8-28
@DTSK. 7-2, 7-5, 7-9, 7-10, 8-15
@ANK. 7-2, 7-6, 7-8, 7-10, 8-21
@KSP................. 6-11, 7-2, 7-5, 7-8, 7-11
@REAK. 7-2, 7-6, 7-8, 7-11
@HNIO............... 3-4, 3-5, 3-7, 3-10, 3-12,
.................... 3-13, 7-2, 7-4, 7-7, 7-12
@KBRKC............... 7-2, 7-6, 7-9, 7-12, 7-21
@KDRV................. 4-3, 4-5, 5-1, 5-4, 7-2,
......................... 7-5, 7-9, 7-13, 8-27
@KECF. 7-2, 7-5, 7-8, 7-13
@xXTsK....7-2, 7-5, 7-9, 7-10, 7-13, 8-15, 8-18
@LCSE. 6-12, 7-2, 7-5, 7-8, 7-14, 7-36
@LS. 7-2, 7-6, 7-9, 7-14
@MNDI 7-1, 7-2, 7-4, 7-8, 7-14,
........... 7-20, 8-25, 8-27, 8-28, 8-29, 8-31
@MDR. 6-8, 7-1, 7-2, 7-5, 7-8, 7-12,
..... 7-14, 7-20, 7-26, 8-25, 8-27, 8-28, 8-29
@TL............... 3-8, 3-10, 3-11, 3-13, 3-14,
.............. 3-15, 3-16, 7-2, 7-4, 7-7, 7-14
@ATE. 7-2, 7-4, 7-9, 7-15
@CINT............... 4-11, 7-2, 7-5, 7-7, 7-15
@CRES................ 4-11, 7-3, 7-5, 7-7, 7-15
@CSTAT. 4-11, 7-3, 7-5, 7-7, 7-16
@EBUG. 7-3, 7-5, 7-8, 7-16
@ECHEX. 7-3, 7-6, 7-7, 7-16
@ RRD........... 5-7, 5-10, 7-3, 7-6, 7-9, 7-16
@RMWR........... 5-7, 5-10, 7-3, 7-6, 7-9, 7-17
@IV16. 7-3, 7-6, 7-7, 7-17
@IV8. 7-3, 7-6, 7-7, 7-17
@DIR................ 5-5, 5-10, 7-3, 7-5, 7-9,
............................ 7-17, 7-24, 8-28
@sP............ 3-10, 7-3, 7-4, 7-7, 7-14, 7-18
@SPLY.......... 7-3, 7-4, 7-7, 7-19, 7-29, 7-32
@RROR. 7-3, 7-5, 7-8, 7-19, 8-9, 8-13, 8-27
@GXT.......... 7-3, 7-4, 7-8, 7-10, 7-12, 7-19,
............................. 7-20, 8-27, 8-28
@EXT................. 7-3, 7-5, 7-8, 7-19, 8-27
@LAGSS........... 7-3, 7-6, 7-8, 7-9, 7-20, 8-1
@NAME. 7-3, 7-6, 7-8, 7-24, 8-27
@SPEC........... 6-4, 7-3, 7-5, 7-8, 7-24, 8-27
@ET.......... 2-6, 3-8, 3-10, 3-11, 3-13, 3-14,
............ 3-16, 3-17, 6-11, 6-12, 7-3, 7-4,
.......................... 7-7,7-8, 7-24, 7-37
@sTDCB. 3-3, 3-14, 7-3, 7-6, 7-9, 7-24, 8-27
@IDCT. 7-3, 7-6, 7-9, 7-25, 7-35
@TMD. 3-6, 3-13, 7-3, 7-6, 7-9, 7-25,
............................. 8-14, 8-15, 8-28
@DFMT. 4-11, 7-3, 7-5, 7-7, 7-25
@EX16........ 7-3, 7-6, 7-7, 7-25
@EX8....... 7-3, 7-6, 7-7, 7-26
@EXDEC. 7-3, 7-6, 7-7, 7-26
@HCHs. 4-17, 7-3, 7-6, 7-8, 7-9,
............................. 7-26, 8-14, 8-16
@NT............ 5-1, 5-6, 5-12, 6-5, 6-6, 6-7,
............... 6-8, 7-3, 7-5, 7-8, 7-26, 7-36
@PL....... . . 7-3, 7-4, 7-8, 7-27
@BD........... 3-10, 3-14, 7-3, 7-4, 7-7, 7-27,
............................. 8-2, 8-24, 8-25
@EY. ... 7-3, 7-4, 7-7, 7-27
@EYIN................ 7-3, 7-4, 7-7, 7-27, 8-25
@LTSK. 7-3, 7-5, 7-9, 7-28, 8-15, 8-17
@OAD. 6-9, 7-3, 7-5, 7-8, 7-22, 7-28, 8-7
@QCC. ... 7-3, 7-5, 7-8, 7-28
@QOF. .. 7-3, 7-5, 7-8, 7-28
@OCCER. 7-3, 7-4, 7-7, 7-28, 7-29
@QOCOT. ... 7-3, 7-4, 7-7, 7-29
@BG. 7-3, 7-4, 7-7, 7-29
@ULL6. 7-3, 7-6, 7-7, 7-29

@MULB. ... 7-3, 7-6, 7-7, 7-29
@FPEN............. 4-5, 5-1, 5-6, 6-6, 6-7, 6-8,
....... 6-12, 7-3, 7-5, 7-8, 7-22, 7-30, 7-36
@ARAM. 3-9, 7-3, 7-4, 7-7, 7-9,
............................ 7-30, 8-27, 8-30
@AUSE................. 4-5, 7-3, 7-4, 7-8, 7-31
@ECF................. 6-12, 7-3, 7-5, 7-8, 7-32
@OSN. 6-10, 6-14, 7-3, 7-5, 7-8, 7-32
@RINT. ... 7-3, 7-4, 7-7, 7-32
@RT. ... 3-10, 7-3, 7-4, 7-7, 7-32
@UT. ... 2-6, 3-7, 3-8, 3-10, 3-11,
......... 3-13, 3-14, 3-15, 3-16, 6-11, 6-12,
.............. 7-3, 7-4, 7-7, 7-8, 7-33, 7-37
@AVD R. ..5-10, 7-3, 7-5, 7-9, 7-24, 7-33, 8-28
@DHDR. 4-11, 7-3, 7-5, 7-7, 7-34
@DSEC. 4-8, 4-11, 5-1, 7-3, 7-5,
............................. 7-7, 7-34, 7-44
@DSSC........... 5-1, 5-10, 7-3, 7-6, 7-9, 7-35
@GOTRK. 4-11, 7-3, 7-5, 7-7, 7-35
@EAD. 2-6, 6-10, 6-12, 7-3, 7-5,
............................. 7-8, 7-35, 7-36
@EMV. ... 7-3, 7-5, 7-8, 7-36
@ENAM. 6-7, 7-4, 7-5, 7-8, 7-36, 8-27
@EW. ... 7-4, 7-5, 7-8, 7-36
@GMISK. ... 7-4, 7-5, 7-9, 7-36, 8-15
@PTSK. 7-4, 7-5, 7-9, 7-37, 8-15, 8-17
@READ. 6-12, 7-4, 7-5, 7-8, 7-37
@SLCT................ 4-11, 7-4, 7-5, 7-7, 7-37
@STOR. 4-11, 7-4, 7-5, 7-7, 7-37
@UN.............. 6-9, 7-1, 7-4, 7-5, 7-8, 7-37
GWRIT. . 7-4, 7-5, 7-8, 7-38
@EEK. 4-11, 7-4, 7-5, 7-7, 7-38
@EEKSC.ccii 7-4, 7-5, 7-8, 7-38
@KIP. ... 7-4, 7-5, 7-8, 7-38
@LCT........... 4-11, 7-4, 7-5, 7-7, 7-39, 7-44
@BOUND.ttt 7-4, 7-6, 7-39
@TEPI 4-11, 7-4, 7-5, 7-7, 7-39
@IMNE. .. 7-4, 7-9, 7-40
@DCTL. . ..o 3-15, 7-4, 7-7, 7-8, 7-9
@ER. ... 7-4, 7-5, 7-8, 7-42
@RSEC4-8, 4-11, 5-2, 5-10, 7-4, 7-5, 7-7, 7-42
@ECF. 6-12, 7-4, 7-5, 7-8, 7-43
@WHERE. 7-4, 7-9, 7-43
@RTE................ 2-6, 7-4, 7-5, 7-8, 7-36,
............................ 7-38, 7-42, 7-43
@\RSEC. 4-11, 7-4, 7-5, 7-8, 7-43, 7-44
@\RSSC. 4-11, 5-1, 5-10, 7-4, 7-5, 7-8, 7-44
@RTRK. 4-11, 7-4, 7-5, 7-8, 7-44
C
CPIM. . 2-1, 3-7, 4-3
D
data address mark................. 4-8, 5-1, 8-9
DCB. ..o 2-2, 2-4, 3-1, 3-4, 3-7, 3-8
.......... 3-9, 3-10, 3-11, 3-12, 3-14, 6-13,
....... 7-3, 7-6, 7-9, 7-15, 7-24, 8-15, 8-27
DCT.....covvvnn. 2-2, 3-1, 4-1, 4-3, 4-14, 5-3,
............. 5-5, 6-10, 7-3, 7-6, 7-9, 7-21,
............................ 7-25, 7-35, 8-26
directory......... 2-3, 4-7, 5-1, 5-2, 5-4, 5-6,
............. 5-7, 5-8, 5-9, 5-10, 5-11, 5-13,
.............. 6-2, 6-3, 6-14, 7-3, 7-4, 7-5,
............ 7-6, 7-8, 7-9, 7-13, 7-14, 7-16,
............... 7-17, 7-22, 7-24, 7-30, 7-33,
..... 7-35, 7-36, 7-43, 7-44, 8-9, 8-11, 8-26
DIRECTORY ENTRYo 5-1
Di sk Operating System.................. 4-1, 6-1

FCB......... 2-2, 2-3, 2-4, 3-2, 3-6, 3-8, 3-14, M
......... 5-11, 6-2, 6-3, 6-4, 6-6, 6-7, 6-8, . L.
__________ 6-9, 6-11, 6-12, 6-13, 7-11, 7-13, machi ne speC|f|c................1-1, 7-21, 7-22
......... 7_15‘ 7_19‘ 7_24‘ 7-28, 7_32‘ 7_35‘ MSOSYS............... l-l, 5-10, 6-12, 7-2, 8-7
_____ 7-36, 7-37, 7-38, 7-39, 7-42, 7-43, 8-8 mMobDCB. 3-7, 3-11, 3-12, 3-13, 7-12, 8-14
FILTER. . .o e e 3-9
floppy disk............ 2-1, 2-3, 4-1, 4-3, 4-5, o
.............. 4-7, 4-9, 4-16, 5-1, 5-2, 6-1, i i) i
........... 6-10, 7-34, 7-35, 7-44 8-9. 8-26 OMNER password..............5-12, 6-4, 6-5, 6-6
FPDE. 5-6, 5-7, 5-10, 6-2 P
FXDE. 5-7, 5-10, 5-11, 5-12, 5-13, 6-2, 8-12
PDS...2-2, 2-5, 5-10, 6-14, 6-15, 8-6, 8-7, 8-8
G PRO-CREATE. 1-1, 2-2, 6-12, 8-6
&r 9.4 4.3 46, 4-8, 5.2, 5.3, PRO-PaDS......... 4-14, 5-10, 6-3, 7-2, 8-5, 8-7
.................. 5-7, 5-9, 5-10, 7-36, 8-11 IS
H SOR. ot 2-4, 7-7
hard disk.............. 4-1, 4-3, 4-4, 4-7, 4-8, STT000. % 4-14, 59
SuperVisor Call 1-1, 2-1, 7-1, 8-13
... 4-9, 4-13, 4-16, 5-3, 5-8, 6-1, 7-25, 8-1 SYSRES 2.4 8-27 8-29
HIGHS. ... 7-11, 7-20, 8-14 ~ DITTrococoroctrroririininin ' ’
HEVEM. .. 2-4 T
HT........ 2-5, 4-8, 5-6, 5-9, 5-10, 7-36, 8-11
| TRSDOS. o ettt 2-1, 7-33
L OR. 2-4 U
UPR. . 2-4
L USER password............... 5-12, 6-4, 6-5, 6-6
LDOS.o 1-1, 2-1, 2-7, 3-14, 5-5, 8-27 7
Logi cal Systems, Inc.................. 1-1, 4-12
LOR. . 2-4 Z-80. ..o 2-1, 2-3, 3-10, 4-4, 7-1

	Top of document
	Copyrights
	1. Introduction
	2. LDOS VERSION 6 - AN OPERATING SYSTEM OVERVIEW
	3. Device Input/Output Interfacing
	3.1 Device I/O In General
	3.2 The Device Control Block
	3.2.1 TYPE Field - Byte 0
	3.2.2 VECTOR Field - <Bytes 1 - 2>
	3.2.3 SYSDATA Field - <Bytes 3-5>
	3.2.4 NAME Field - <Bytes 6 - 7>

	3.3 ACCESSING DEVICE CONTROL BLOCKS
	3.4 DEVICE CHAIN ILLUSTRATIONS
	3.4.1 Header Protocol
	3.4.2 Sample DCB Structure
	3.4.3 Filtering
	3.4.4 Routing
	3.4.5 Filtering a Routed Device
	3.4.6 Linking
	3.4.7 Device Chain Hierarchy
	3.4.8 Device Chain Summary

	3.5 DEVICE DRIVER/FILTER TEMPLATE
	3.5.1 I/O Primitives
	3.5.2 I/O Separation
	3.5.3 Device Driver/Filter Return Codes
	3.5.4 Filter Interfacing
	3.5.5 Filter Initialization
	3.5.6 A Partial Filter
	3.5.7 External Access of Module Data

	3.6 @CTL INTERFACING TO DEVICE DRIVERS
	3.6.1 Keyboard driver [system driver assigned to *KI]
	3.6.2 Video driver [system driver assigned to *DO]
	3.6.3 Printer driver [system driver assigned to *PR]
	3.6.4 Forms Filter [non-resident system filter for forms control]
	3.6.5 COM driver [non-resident system driver for the RS-232C]

	4. DISK DRIVE INPUT/OUTPUT INTERFACING
	4.1 GENERAL DISK DRIVE CONFIGURATION
	4.2 DRIVE CONTROL TABLE (DCT)
	4.2.1 DCT VECTOR - <Bytes 0-2>
	4.2.2 DCT FLAG-1 - <Byte 3>
	4.2.3 DCT FLAG-2 <Byte 4>
	4.2.4 CURCYL - <Byte 5>
	4.2.5 MAXCYL - <Byte 6>
	4.2.6 CONFIGURATION FIELD - <Bytes 7-8>
	4.2.6.1 Byte 7
	4.2.6.2 Byte 8

	4.2.7 DIRCYL - <Byte 9>

	4.3 DISK CONTROLLER COMMUNICATIONS
	4.4 Skeletal Disk Driver
	4.5 HARD DISK ALLOCATION SCHEMES
	4.6 Placement of Disk Drivers

	5. The DOS Directory Structure
	5.1 GENERAL DIRECTORY CONVENTIONS
	5.2 THE GRANULE ALLOCATION TABLE (GAT)
	5.2.1 ALLOCATION TABLE - <Bytes X'00' - X'5F'>
	5.2.2 LOCKOUT TABLE - <Bytes X'60' - X'BF'>
	5.2.3 EXTENDED ALLOCATION TABLE - <Bytes X'C0' - X'CA'>
	5.2.4 DOS VERSION - <Byte X'CB'>
	5.2.5 CYLINDER EXCESS - <Byte X'CC'>
	5.2.6 DISK CONFIGURATION - <Byte X'CD'>
	5.2.7 DISK PACK PASSWORD - <Bytes X'CE' - X'CF'>
	5.2.8 PACK NAME - <Bytes X'D0' - X'D7'>
	5.2.9 PACK DATE - <Bytes X'D8' - X'DF'>
	5.2.10 RESERVED FIELD - <Bytes X'E0' - X'F4'>
	5.2.11 MEDIA DATA BLOCK - <Bytes X'F4' - X'FF'>

	5.3 THE HASH INDEX TABLE (HIT)
	5.4 THE DIRECTORY RECORD STRUCTURE
	5.4.1 ATTRIBUTES - <Byte 0>
	5.4.2 FLAG FIELD - <Byte 1>
	5.4.3 MODIFICATION DATE - <Bytes 1 - 2>
	5.4.4 EOF OFFSET - <Byte 3>
	5.4.5 LOGICAL RECORD LENGTH - <Byte 4>
	5.4.6 FILE NAME - <Bytes 5 - 12>
	5.4.7 FILE EXTENSION - <Bytes 13 - 15>
	5.4.8 OWNER PASSWORD - <Bytes 16 - 17>
	5.4.9 USER PASSWORD - <Bytes 18 - 19>
	5.4.10 ENDING RECORD NUMBER - <Bytes 20 - 21>
	5.4.11 EXTENT DATA FIELDS - <Bytes 22 - 29>
	5.4.11.1 Extent Field 1 - <Bytes 22-23>
	5.4.11.2 Extent Field 2 - <Bytes 24-25>
	5.4.11.3 Extent Field 3 - <Bytes 26-27>
	5.4.11.4 Extent Field 4 - <Bytes 28-29>

	5.4.12 FXDE LINK FLAG - <Byte 30>
	5.4.13 FXDE LINK POINTER - <Byte 31>

	6. Disk File Access and Control
	6.1 GENERAL FILE STRUCTURES
	6.2 CONTROLLING DISK FILES
	6.2.1 Getting Filespecs
	6.2.2 Password Protection of Files
	6.2.3 Opening Files
	6.2.4 Closing Files
	6.2.5 Miscellaneous File Control

	6.3 ACCESSING DISK FILES
	6.3.1 Specific Access Requests

	6.4 The FILE CONTROL BLOCK (FCB)
	6.4.1 TYPE code of the control block - <Byte 0>
	6.4.2 Input/Output Status - <Byte 1>
	6.4.3 PDS Member Origin Offset - <Byte 2>
	6.4.4 Disk File Buffer Pointer - <Bytes 3-4>
	6.4.5 Next Record Number Byte Offset - <Byte 5>
	6.4.6 Logical Drive Number - <Byte 6>
	6.4.7 Directory Entry Code - <Byte 7>
	6.4.8 Ending Record Number Byte Offset - <Byte 8>
	6.4.9 Logical Record Length - <Byte 9>
	6.4.10 Next Record Number <Bytes 10-11>
	6.4.11 Ending Record Number <Bytes 12-13>
	6.4.12 Starting Extent - <Bytes 14-15>
	6.4.13 Extent Quad 1 - <Bytes 16-19>
	6.4.14 Extent Quad 2 - <Bytes 20-23>
	6.4.15 Extent Quad 3 - <Bytes 24-27>
	6.4.16 Extent Quad 4 - <Bytes 28-31>

	7. Interfacing via SuperVisor Calls
	7.1 SUPERVISOR CALL LINKAGE
	7.1.1 Adding or Changing SVC Entries
	7.2 PROGRAM ENTRY AND EXIT CONDITIONS
	7.3 SUPERVISOR CALLS LISTED ALPHABETICALLY
	7.4 SUPERVISOR CALLS LISTED NUMERICALLY
	7.5 SUPERVISOR CALLS LISTED BY FUNCTION GROUP
	7.5.1 Character I/O
	7.5.2 Line I/O
	7.5.3 Data Conversion
	7.5.4 Disk Controller Communications
	7.5.5 File Access
	7.5.6 File Control
	7.5.7 System Control
	7.5.8 System Data
	7.5.9 Task Process Control
	7.5.10 Miscellaneous

	7.6 SUPERVISOR CALL DETAILS
	7.6.1 @ABORT SVC-21
	7.6.2 @ADTSK SVC-29
	7.6.3 @BANK SVC-102
	7.6.4 @BKSP SVC-61
	7.6.5 @BREAK SVC-103
	7.6.6 @CHNIO SVC-20
	7.6.7 @CKBRKC SVC-106
	7.6.8 @CKDRV SVC-33
	7.6.9 @CKTSK SVC-28
	7.6.10 @CLOSE SVC-60
	7.6.11 @CLS SVC-105
	7.6.12 @CMNDI SVC-24
	7.6.13 @CMNDR SVC-25
	7.6.14 @CTL SVC-05
	7.6.15 @DATE SVC-18
	7.6.16 @DCINIT SVC-42
	7.6.17 @DCRES SVC-43
	7.6.18 @DCSTAT SVC-40
	7.6.19 @DEBUG SVC-27
	7.6.20 @DECHEX SVC-96
	7.6.21 @DIRRD SVC-87
	7.6.22 @DIRWR SVC-88
	7.6.23 @DIV16 SVC-94
	7.6.24 @DIV8 SVC-93
	7.6.25 @DODIR SVC-34
	7.6.26 @DSP SVC-02
	7.6.27 @DSPLY SVC-10
	7.6.28 @ERROR SVC-26
	7.6.29 @EXIT SVC-22
	7.6.30 @FEXT SVC-79
	7.6.31 @FLAGS$ SVC-101
	7.6.32 @FNAME SVC-80
	7.6.33 @FSPEC SVC-78
	7.6.34 @GET SVC-03
	7.6.35 @GTDCB SVC-82
	7.6.36 @GTDCT SVC-81
	7.6.37 @GTMOD SVC-83
	7.6.38 @HDFMT SVC-52
	7.6.39 @HEX16 SVC-99
	7.6.40 @HEX8 SVC-98
	7.6.41 @HEXDEC SVC-97
	7.6.42 @HIGH$ SVC-100
	7.6.43 @INIT SVC-58
	7.6.44 @IPL SVC-00
	7.6.45 @KBD SVC-08
	7.6.46 @KEY SVC-01
	7.6.47 @KEYIN SVC-09
	7.6.48 @KLTSK SVC-32
	7.6.49 @LOAD SVC-76
	7.6.50 @LOC SVC-63
	7.6.51 @LOF SVC-64
	7.6.52 @LOGER SVC-11
	7.6.53 @LOGOT SVC-12
	7.6.54 @MSG SVC-13
	7.6.55 @MUL16 SVC-91
	7.6.56 @MUL8 SVC-90
	7.6.57 @OPEN SVC-59
	7.6.58 @PARAM SVC-17
	7.6.59 @PAUSE SVC-16
	7.6.60 @PEOF SVC-65
	7.6.61 @POSN SVC-66
	7.6.62 @PRINT SVC-14
	7.6.63 @PRT SVC-06
	7.6.64 @PUT SVC-04
	7.6.65 @RAMDIR SVC-35
	7.6.66 @RDHDR SVC-48
	7.6.67 @RDSEC SVC-49
	7.6.68 @RDSSC SVC-85
	7.6.69 @RDTRK SVC-51
	7.6.70 @READ SVC-67
	7.6.71 @REMOV SVC-57
	7.6.72 @RENAM SVC-56
	7.6.73 @REW SVC-68
	7.6.74 @RMTSK SVC-30
	7.6.75 @RPTSK SVC-31
	7.6.76 @RREADSVC-69
	7.6.77 @RSLCT SVC-47
	7.6.78 @RSTOR SVC-44
	7.6.79 @RUN SVC-77
	7.6.80 @RWRIT SVC-70
	7.6.81 @SEEK SVC-46
	7.6.82 @SEEKSC SVC-71
	7.6.83 @SKIP SVC-72
	7.6.84 @SLCT SVC-41
	7.6.85 @SOUND SVC-104
	7.6.86 @STEPI SVC-45
	7.6.87 @TIME SVC-19
	7.6.88 @VDCTL SVC-15
	7.6.89 @VER SVC-73
	7.6.90 @VRSEC SVC-50
	7.6.91 @WEOF SVC-74
	7.6.92 @WHERE SVC-07
	7.6.93 @WRITE SVC-75
	7.6.94 @WRSEC SVC-53
	7.6.95 @WRSSC SVC-54
	7.6.96 @WRTRK SVC-55

	8. APPENDIX
	8.1 BOOT INITIALIZATION ICNFG INTERFACING
	8.2 THE KFLAG$ SCANNER
	8.3 DISK LOAD MODULE FORMATS
	8.4 ERROR MESSAGE DICTIONARY
	8.5 HEADER PROTOCOL OF MEMORY MODULES
	8.6 INTERRUPT TASK PROCESSOR INTERFACING
	8.7 LOW MEMORY DETAILS
	8.7.1 Details of Low Memory Page 0
	8.7.2 Details of Low Memory Page 1
	8.7.3 Details of Low Memory Page 2
	8.7.4 Details of Low Memory Page 4

	8.8 MEMORY BANK SWITCHING
	8.9 INTERFACING TO @KITSK
	8.10 SYSTEM DISK BOOT TRACK
	8.11 SYSTEM OVERLAY CONTENTS
	8.11.1 SYS0/SYS
	8.11.2 SYS1/SYS
	8.11.3 SYS2/SYS
	8.11.4 SYS3/SYS
	8.11.5 SYS4/SYS
	8.11.6 SYS5/SYS
	8.11.7 SYS6/SYS
	8.11.8 SYS7/SYS
	8.11.9 SYS8/SYS
	8.11.10 SYS9/SYS
	8.11.11 SYS10/SYS
	8.11.12 SYS11/SYS
	8.11.13 SYS12/SYS
	8.11.14 SYS13/SYS

	8.12 SYSTEM OVERLAY ACCESS
	8.13 USING @PARAM
	8.14 TRAP Filter Illustrated
	8.15 SLASH0 Filter Illustrated
	8.16 DMP-500 BOLDFACE Filter Illustrated

	Index

