
MISOSYS, INC.

The Programmer's

Guide to TRSDOS

Version 6

Misosys, Inc.

The Programmer's Guide to TRSDOS Version 6

By Roy Soltoff, BSEE

Copyright  1983 MISOSYS
All Rights Reserved

First Edition - 1983
Second Edition - 1984

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without expressed written permission is

prohibited.

Disclaimer:

While MISOSYS has taken every precaution in the preparation of this book, it
assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained

herein.

MISOSYS Inc.
P. O. Box 239

Sterling, Virginia 22170-0239

This book is dedicated to my first daughter, Stacey Elizabeth, whose birth the
eighth of June of 1983 provided me my proudest moment in life. There is no way
that I can sufficiently thank my wife, Brenda, for nurturing and bringing forth
this new human being - but I'll try.

1-1

1. Introduction
Many thousands of users take it upon themselves to explore the workings of an operating
system to gain a better understanding of application software interfacing. This has
always been such a waste of programmer talent because the system's designers usually know
the best interfacing procedures. A complex operating system has many idiosyncrasies.
Because of this fact, some procedures work much better than others to accomplish the same
goal.

An operating system in this day and age demands that precious talent not be wasted. LDOS
Version 6 is a complex operating system. There should not be a void of information that
the programmer needs to properly write his or her software. For the programmer, this book
should fill that void. It is not intended as an assembly language learning tool nor is it
intended as an expose' of "mysteries" concerning the internal workings of the operating
system. This book conveys that information which is essential to the job of programming
application software, utilities, device drivers and filters.

It is very important for the programmer to keep PORTABILITY paramount in the thinking
that goes along with program design. LDOS Version 6 was designed to provide portability
for application software by incorporating standard protocols and conventions for all
interfacing. Keep that in mind when you explore the contents of this book.

Knowing that the microcomputer community inherently finds distasteful the prospect of
reading documentation cover-to-cover prior to jumping in and getting their feet wet, this
book includes an index. Then again, what kind of book omits an index? Feel free to access
the information randomly, although I recommend that a sequential scanning is more suited
to the learning process.

The chapter contents have been designed to be self-contained. Thus, you may find some
small repetition of subject matter where it was felt that a term or concept may not have
been carried over from an earlier chapter due to an indexed access of the subject matter.

I have tried to be complete within the subjects discussed. As there are some proprietary
items within the operating system, confidentiality precludes their appearance in this
book. However, any work of this magnitude is bound to omit a detail. If you feel that a
subject should have been included, please bring it to the publisher's attention. Remember
that the desire to foster the development of portable software may mean that certain
points may have been omitted to preclude the writing of non-portable machine specific
software. Where you must write machine specific software, it is recommended that you
obtain the manufacturer's hardware technical manual.

The programming examples were coded with the PRO-CREATE assembler, which is available
from MISOSYS. References to SuperVisor Calls in the form @XXXX should have a
corresponding EQU statement, which defines the SVC number.

For those individuals firmly entrenched in operating system exploration, I heartily
recommend THE SOURCE, a three-volume set of books that provide the complete set of
assembler source listings that constitute LDOS Version 6.2.0. THE SOURCE is available
from Logical Systems, Inc.

Lastly, the author is always open to suggestions for improving this book. Certainly if
you uncover erroneous data, suggest that it be corrected in the next printing. I wish you
successful programming.

2-1

2. LDOS VERSION 6 - AN OPERATING SYSTEM OVERVIEW
After spending a few hours at any computer show featuring microcomputers, it becomes
obvious that most 8-bit machines look surprisingly similar. Each comes equipped more or
less with the following features: CRT monitor, keyboard, one or more 5-1/4" or 8" floppy
disk drives (usually 5-1/4" minifloppies), 64K-128K of RAM, and a processor card. With
the industry seemingly adopting CP/M as an operating system pseudo-standard, the chip
usually chosen is Zilog's Z-80 microprocessor. The design of these machines must be
sufficiently straight forward. While each competing manufacturer attempts to make its
machine more desirable by implementing greater reliability, flexible interfacing, more
peripheral support, additional hardware features, attractive packaging, and lower cost,
cognizance of the cost effectiveness of utilizing smarter software may just be the
important ingredient sometimes overlooked.

Alternative operating systems are available that bring a great deal of main-frame power
to the microcomputer. One such system, LDOS Version 6 [or its licensed dialects such as
TRSDOS 6], is a classic example of a truly powerful operating system designed for an
eight bit microcomputer using the Z-80 processor chip. LDOS provides a single-user system
with total device independence, dynamic file space allocation, extensive file management,
job control language structures, a large library of utilities, plus the ability to easily
interface to disk storage devices with capacities from 88 kilobyte minifloppies to multi-
megabyte Winchester disk drives. Error trapping and an English-like command structure
help make LDOS a user-friendly but powerful operating system.

The primary design obligation of LDOS is to ensure MEDIA COMPATIBILITY across all
machines running the DOS (within the 5-1/4 or 8" size). This means that a user must be
able to take a diskette and use it across all machines running LDOS - so long as the
hardware permits that size diskette. To accomplish this, the DOS has a "standard" 5-1/4"
structure - both single density and double density. It also has a "standard" 8" diskette
structure. The structure goes beyond just the format and allocation schemes - it covers
the entire directory makeup.

The hardware architecture chosen for LDOS Version 6 is a Z-80 based microcomputer with a
minimum of 64K RAM and 80 by 24 video screen size. The DOS includes a bank-switching
SuperVisor Call that implements memory bank switching. The SVC permits switching a memory
segment (usually the top 32K) with up to seven auxiliary 32K memory banks. It also
supports the controlled transfer of execution to a location within the bank at the option
of the user. The system maintains supervision of the resident bank to ensure that the
standard bank (bank 0) is always resident during certain operations (disk I/O, character
I/O, and interrupt task handling). The DOS is designed to operate starting from address
zero (page 0 origin) and is 100% SuperVisor Call (SVC) accessed. System data items needed
by application software are also available via SVCs.

Essentially, there are two levels of interaction to the system - command level and
primitive level. At the command level, the operator enters a command which requests the
execution of some function [perhaps the listing of a file, the displaying of a disk
directory, the running of a BASIC program, or the compiling of a C language source file].
The command interpreter parses the user entry, determines whether the request is for a
system function or user-supplied function, then arranges for the necessary system
resources. Control is transferred to the module necessary to satisfy the request. The
system passes parameter pointers to the module and expects a return code upon the
module's completion.

System resources and data quantities are requested via a SuperVisor Call (SVC) processor.
An SVC is associated with all system primitives (i.e. get a character, put a character,
open a file, add a task, rename a file, ...). Application software written in a low-level
language (such as assembler) makes direct use of the SVC. Programs using a high-level

2-2

language (i.e. BASIC, C, PASCAL, ...) need not bother with the SVC as system interfacing
is accomplished within the language interpreter or compiler.

The DOS supports up to eight logical disk packs or volumes logically numbered 0-7. Each
floppy, be it one or two sided, is treated as a single volume. Hard disk drives
(winchesters) may be treated as a single volume or partitioned into multiple volumes. A
Drive Control Table (DCT) contains the parameters associated with each disk (number of
cylinders, heads, and sectors per track for example) and also interfaces the disk driver
software to the system.

Character Input/Output devices (i.e. keyboard, video display, printer, RS-232 serial
ports, ...) and their associated software driver routines are interfaced to the system
via Device Control Blocks (DCB). I/O devices are identified by a two-character device
name such as KI (keyboard input), DO (video output), PR (printer), and CL (communications
line). Whenever a device is specified, it is denoted by an asterisk followed by the
device name to form a complete "device specification". The reason for this will soon
become evident. Additional devices can be defined to the system once an appropriate
software driver is available. The device name selection is left up to the user.

A collection of data stored on disk is termed a file and is denoted by a file
specification. A complete file specification consists of five parts: a file name of up to
eight characters, a file extension of up to three characters, a file password of up to
eight characters, the logical drive specification, and optionally, in certain cases of
Partitioned Data Sets (PDS), a member specification of up to eight characters. Whenever
users institute a structured naming convention, most files are accessible via the file
name reference only. The DOS will search all drives for a file if the drive specification
is omitted from the file specification. In addition, many system utilities and user
applications can use default file extensions to separate files into classes. For
example, PRO-CREATE, a popular assembler running under the DOS, will automatically use
the file extension "/ASM" for its source files and "/CMD" for its object code generation
thus alleviating the user of the necessity to enter the file extensions (it also helps to
prevent inadvertently overwriting one file with another). Similarly, LDOS makes
extensive use of default file extensions such as "JCL" for all Job Control Language,
"TXT" for ASCII listings, "FLT" for all device filters, etc.

File specifications and device specifications are generally interchangeable. Thus,
wherever a file specification is needed, a device specification can usually be entered.
This is one of the examples of device independence in the system. The protocol used in
character I/O is identical across logical devices (i.e. *KI, *PR, *SO,...) and disk
files. Thus, character I/O is handled the same way regardless of the physical device
identified in the Device/File Control Block (DCB/FCB) - be it physical keyboard, printer,
or disk file. For example, the COPY utility is used primarily to copy a file from one
disk to another, as in:

COPY ARTICLE/TXT:0 TO ARTICLE/TXT:1

which creates a duplicate on drive 1 of the file specified "ARTICLE/TXT" located on drive
0. In lieu of the file specifications, device specifications could equally be used as in
the following:

 COPY *KI TO *PR

which copies keyboard input directly to the printer. With ease, a keyboard can be added
to a daisy-wheel printer turning it into a temporary typewriter. Perhaps a more useful
illustration would be the convenience of directing program output to video display,
printer, or a file depending on the device/file specification provided.

2-3

The acquisition of disk file space is completely transparent to the user. This frees the
user from worrying about sectors, tracks, cylinders, heads, and even disk drives in most
cases. File space is obtained dynamically for any given file when space is required.
Since directory accesses are dynamic (i.e. any time directory information requires
updating, a disk access is made), users can change floppy disk ettes in a disk drive after
any open files on the disk have been closed with out having to "log" the action.

Files do not have to occupy contiguous space on a disk but can exist in blocks of space
called extents. Linkage maps exist in a file's directory which connect each extent.
Access to a file is achieved by placing the file specification in a File Control Block
(FCB), referencing a user disk file I/O buffer, and issuing the "OPEN" SVC. The provision
of a separate file buffer for each file greatly adds to the system's flexibility.
Directory information needed by the file access routines is then placed in the "open"
FCB. Thereafter, SVC requests for file positioning, reading, and writing are available to
access any record in the file. Fixed record lengths of from one to 256 bytes are
available directly at the SVC level. Languages, such as BASIC, generally provide
sequential files with variable record lengths.

Although the functions supported are many, a minimum of the machine's RAM space is
required by LDOS. This is achieved by having only frequently used routines resident in
memory while others are brought in to an overlay region on an as-required basis. All of
the functions identified in Table 1-1, including the device and disk drivers (both floppy
and hard), are contained in a 9K memory space which includes a 1.5K (1536 bytes) system
overlay region. Another 3K region is used for the execution of system library commands
but may be used by applications that do not request system library functions.
Functionally, the DOS is divided into seven regions: system low core (LOWCORE),
Input/Output driver region (IOR), resident system (SYSRES), System Overlay Region (SOR),
Library Overlay Region (LOR), User Program Region (UPR), and high memory region (HIMEM).
The UPR extends from X'3000' through HIGH$. Table 1-1 illustrates these regions. The DOS
normally does not use HIMEM; however, certain user-specified requests must be satisfied
by use of high memory. For example, SPOOL filter and buffer space use high memory. KSM
filter and data space use high memory. A pointer to the top of HIMEM is available via an
SVC and programs must honor this HIGH$ pointer.

The interrupt task scheduler listed in Table 2-1 under SYSRES schedules the execution of
small background tasks at periodic intervals. The time intervals are determined primarily
by a hardware generated interrupt to the Z-80 processor. A desirable minimum interrupt
rate would be 40-60 Hz. This "clock" is software divided to produce "high", medium, and
"low" level task control. The DOS provides for eight low level tasks, three medium level
tasks, and one high level task. For example, with a 60Hz interrupt rate, one task can be
performed at 16.7ms intervals, three discrete tasks can be processed at 33.3ms intervals
while eight other tasks are processed at 267ms intervals. The types of tasks generally
operating from such a scheduler would be software time of day routines, printer
despooling routines, address trace functions, keyboard type ahead scanning, blinking
cursor routines, or other processes that need to be examined at periodic intervals.

As a specific example of how software can reduce hardware costs, briefly examine keyboard
type-ahead. This feature is quite significant to a fast typist. Even slow operator entry
can gain from type ahead by the ability to enter responses in anticipation of known
queries. Even if the hardware does not provide an interrupt generating keyboard, the DOS
implements a 64-128 (depending on release) character type ahead buffer via task polling
which is adequate for all operators.

2-4

NAME START END DESCRIPTION
LOWCORE X’0000 @$SYS RST vectors, NMI vector, System flags, Date, Time,

System FCB, DEBUG register save area, JCL FCB,
Command FCB, SVC Table, DCB Table, System stack,
Miscellaneous data, Command input buffer, Drive
Control Table, Device I/O handler, Clock task, Memory
management routines.

IOR @SYS X’12FF Keyboard, Video, Printer, and Disk drivers.
SYSRES X’1300 X’1DFF File access routines, SVC processor, System overlay

handler, System program loader, Interrupt Task
Schedular, System buffer.

SOR X’1E00 X’23FF Execution region for system overlays 2-5, 9-13,
overlay disk file buffer.

LOR X’2400 X’25FF Execution region for system library comands contained
in libraries A, B, & C.

UPR X’3000 (HIGH$) Execution region for user transient programs (note:
programs not accessing the system libraries can start
at X'2600'.)

HIMEM (HIGH$)+1 X’FFFF Region for relocation of extended system and user
static modules.
Table 2-1 System Map

The task scheduler is also used by the despooling function of the printer spooler. The
DOS spooler implements a combination of memory and disk buffers to temporarily hold the
printer output. This output is despooled to the printer under the control of the task
scheduler. The function, being transparent to the user, can continue the despooling even
after the application generating the output is finished and another started. When the
system contains 128K (or more) of RAM, the extra RAM can be set aside for the spooler's
memory buffer.

The primary function of any operating system is to provide the user with a facility for
managing and accessing files stored on disk storage devices. Since the user must not be
burdened with the physical details of the storage devices themselves, it is the operating
system's responsibility to translate all file record access requests into specific drive,
track, sector, and head parameters that pinpoint the storage location of each record. The
DOS supports a wide range of disk storage capacities. Let's take a brief look at how a
disk drive is organized.

Each track is formatted into a specific quantity of 256-byte sectors with a maximum
capacity of 32 sectors per track. Sectors are grouped into blocks called "granules" which
vary in size according to total track capacity. Whenever additional disk space is needed
for a file, an additional granule is allocated. The granule thus becomes the minimum size
storage unit. Where multiple headed drives are in use, the track numbers on a surface are
duplicated on each surface with all similarly numbered tracks constituting a cylinder.
Cylinder capacities also have an upper limit of 256 sectors per cylinder or eight
granules per cylinder while the system supports a maximum of eight heads per drive.

In order to evenly use the entire surface of a drive, files are uniformly distributed
across each surface [note: LSI unfortunately has changed to a fixed allocation scheme
effective with release 6.1]. That means the head has a tendency to be randomly located
whenever a directory access is needed. Because of this, each disk drive's directory is
placed on the cylinder closest to its midpoint which provides a tendency to minimize the
average seek time for directory accesses. The directory, of course, contains information
on each file stored on the drive as well as additional tables and codes pertinent to the
drive.

The first sector of the directory contains a granule allocation table (GAT). The GAT is
bit mapped to each granule of space on the drive. Other fields in the GAT contain the

2-5

PACK NAME, DATE of creation, pack PASSWORD, and data pertaining to the configuration of
the drive.

The system can support a capacity of 13 Megabytes of directly addressable storage on each
of eight drives. Rigid disk drives of greater capacities can be supported by partitioning
them into two or more logical drives. Also, where a physical parameter exceeds the upper
limits, translation techniques can be used in software. Again, the flexibility of the
system provided through intelligent software allows for easy interfacing.

When a file is to be opened for access, the system needs to search the directory for its
directory record. Search time is minimized by using a hashing technique to reduce the 11-
character string formed from the file name and extension to a one-byte value. The hash
code for each file is stored in a Hash Index Table (HIT) which is the second sector of
the directory. Each position in this table corresponds to a specific directory entry
record. The hash table, being a sector in length, can index a maximum of 256 directory
records or files. The directory itself is sized according to disk capacity by being a
maximum of one cylinder (up to 34 sectors). Thus, the larger the disk storage capacity,
the larger its directory, and the greater the number of file names that can be stored.

To open a file, therefore, the file name and extension are gathered from the
specification and put through the hashing algorithm. The HIT sector is read and searched
for a matching value. When a match is found, the directory sector containing the
corresponding directory record is read. To guard against a different file name/ext
hashing to the same value (which is called a collision), the 11-byte string is then
checked for a match. If the correct record has not been retrieved, the HIT is examined
further.

The directory record contains information such as the date the file was last modified,
its update and access password codes, its access level, other attributes such as whether
it is a SYStem or PDS file and if a backup has been made, the relative number of the last
sector in the file and the last byte within the last sector. The record also contains the
physical storage in use by the file by pointing to the cylinder, relative starting
granule, and number of contiguous granules for each extent linking up the file. When a
file has more than four extents, additional directory records are used as required with
forward and backward pointers linking each record.

A feature considered important by many users is the flexibility of the file management
utilities. These utilities include such functions as copying files from one drive to
another, appending two files together, listing files with structured formatting, renaming
files, removing files, obtaining disk directories, and making archival backups of your
"favorite" files. All are popular functions with BACKUP being one of the most important
in light of the tremendous capacity available when using large storage devices.

Ever since small winchester drives started to appear interfaced to small microcomputers,
the question of how to backup these devices loomed large. Although some installations
consider streaming tape for backup (relatively expensive as an added cost) while others
are incorporating video cassette recorder interfaces (assumes the availability of VCRs at
the micro site or another added cost), by far the most popular method has been the use of
floppy diskettes (least expensive and widely available). Floppies do have a serious
drawback. When comparing the available capacities of a single floppy to a small
winchester, it soon becomes obvious that a good handful of diskettes are required to
backup the hard drive.

A sophisticated backup utility can ease the frustration of archiving hard disk files. For
one thing, with the availability of 80-track 2-headed minifloppies, over 700 Kilobytes
can be stored on a single 5-1/4" diskette when recorded in double density. With 2-headed
8" drives, 1.2 Megabytes of storage exist on a floppy diskette. For another thing, the

2-6

backup utility provides exceptional flexibility as can be evidenced by the following
command examples:

BACKUP :4 TO :2

will copy all files from logical drive 4 to logical drive 2. If both drives are floppies
having the same physical configuration (i.e. both 40-track 2-headed with the same
density), then the backup will automatically be performed track by track called "mirror
image".

BACKUP /TXT:3 TO :5 (OLD)

will copy all files with a file extension of "TXT" from logical drive 3 to logical drive
5 but only if the file already exists on logical drive 5. The use of the "OLD" parameter
permits organization of archival copies.

BACKUP R$S/BAS:4 TO :2 (MOD,DATE="11/09/82-11/15/82")

will make copies of all files from logical drive 4 with a filename starting with the
character "R", the third character "S", with any character acceptable in all other file
name character positions. Also, files must have been last modified between the dates of
November 9, 1982 through November 15, 1982 inclusive in order to be included in the
backup. In addition, the file must not have been backed up since it was last modified.

These examples illustrate the extreme flexibility of managing archival copies of working
files. When used in a hard drive environment, large capacity floppy diskettes can be used
to store selected "classes" of files with working files backed up in a structured manor
only if they have been modified. Daily "churning" of working files is minimal, thus a
procedure that enables a backup only if a modification has been done to a working file
within a class certainly lends itself to optimum file management techniques without the
need for expensive backup hardware. For those cases where a single file exceeds the
capacity of a single floppy, a separate utility provides diskette spanning capabilities
for the backup.

The command to obtain a directory display is used frequently in most machine en-
vironments. The DOS directory command listing is sorted by file name/ext. When the length
of a listing exceeds the line capacity of the video display, paging is performed with a
pause at each page. The listing provides data on the protection level, logical record
length, file length (in kilobytes), date of last update, and whether a backup copy
exists, for each file in the directory. A partial file specification can be requested to
limit the listing to those files in the "class" similar to the BACKUP utility.

Disk files are supported with two types of access - Record I/O and character I/O. Logical
Records of from one to 256 bytes in length can be read or written using the @READ or
@WRITE SVC requests. Record I/O can be random access (by position SVC requests prior to
READ/WRITE) or sequential access using repetitive READs or WRITEs. Character I/O is
accomplished by @GET and @PUT SVC requests and is essentially the same as record I/O with
a Logical Record Length (LRL) equal to one. However, if GET and PUT are used to implement
sequential access, then a file can be considered a character I/O device just like a
printer, a serial port, or a video display device. A byte I/O request is therefore
independent of the physical device "connected" to the control block which is requesting
the I/O. This makes the system "device independent".

Routing, filtering, and linking is 100% - devices may be routed to files and subsequently
filtered and linked. A priority level hierarchy is established according to bit assign-
ments in the DCB: file, NIL, route, link, and filter (file being the highest). Filters
are assigned control blocks in the DCB table area which supports up to 31 entries. Each
device driver and filter has its own entry. The establishment of a LINK also uses a DCB

2-7

entry to maintain the pointers used for each device in the LINK. Several system library
commands, such as the FILTER, LINK, RESET, ROUTE, and SET commands, are provided that are
used to support device independence. An illustration of the use of these commands lends
well to understanding the full power of device independence. For example, if a suitable
software driver (with a filename of RS232/DVR) is available for a serial port (RS-232
channel), then a simple:

SET *CL TO RS232

will establish the serial port as a device with "CL" as the device name. Now that such a
device is available, the user can:

LINK *KI TO *CL
LINK *DO TO *CL

and the micro is established as a "host" because the serial communications line has been
linked to both the machine's keyboard and its video display - the primary input and out-
put devices of the machine.

Device I/O can also be massaged with transformation functions, called filters. For
example, an EBCDIC to ASCII translation filter is available that when applied to the
serial port by a simple:

SET *XL TO XLATE USING EBCDIC
FILTER *CL WITH XLATE

the micro can be tied to an IBM mainframe which supports only EBCDIC ports. Want to
implement a DVORAK keyboard? By simply filtering the *KI device with the DVORAK
translation filter, the keyboard is reorganized - with NO hardware changes required. Many
filters are available to format print output, trap specific character codes, perform
upper/lower case conversions - the limits are boundless. That's flexibility!

Now that you have a flavor of the capabilities of the DOS, this guide can be used to
understand how to interface your programs. The bulk of LDOS Version 6 is machine
independent. What this means to you as a programmer is that once you write an application
to run under LDOS 6.x, it is portable to any machine running version 6. All you need do
is utilize the standard interfacing procedures discussed in this programmers guide. Let
the DOS do what an operating system is supposed to do - interface the application to the
hardware.

3-1

3. Device Input/Output Interfacing
3.1 Device I/O In General
Devices interface to the operating system through driver modules. Character-oriented
devices (keyboards, video display tubes, printers, and serial terminals, to name but a
few), have their drivers connected to the DOS by Device Control Block (DCB) tables [this
is in contrast to disk-type devices which have drivers connected to the system through
Drive Control Tables (DCT)]. The purpose of the DCB is to associate a device name with
the device hardware itself. A device specification (abbreviated as "devspec") is formed
by prefixing an asterisk to the device name. Programs may then reference the device via
the device specification in order to identify a particular device for character I/O.

There are three input/output functions that are associated with all character-oriented
devices. The "GET" function obtains a character from the device. The "PUT" function sends
a character to the device. The "CTL" function provides a means of communicating with the
device driver and generally does not invoke input/output with the physical device itself.
It is up to the device driver to ensure that the device is currently able to take the
character in the case of PUT as well as detect the availability of a character in the
case of GET and return the proper condition.

Disk files may also be interfaced via character I/O as well as record I/O [file access
via record I/O is discussed in chapter 6, DISK FILE ACCESS AND CONTROL]. A disk file's
actual physical storage location on a disk drive is transparent to the user by
referencing the file with its associated name (more properly termed its file
specification or "filespec"). The operating system permits filespecs and devspecs to be
used equivalently in most cases. Character I/O is thus independent of a device or file.
The DOS permits the redirection of character I/O at the command level. Because of this,
applications must expect character I/O to be associated with a disk file as well as a
standard character-oriented device. The DOS provides a uniform protocol for I/O
handshaking regardless of character device.

There are three major operations associated with devices. One of these is "routing" which
implements the support of I/O redirection. Another is linking which is used to connect
two or more devices together. The third operation associated with devices uses filters to
achieve filtering. Filters are program modules that can be logically placed between the
Device Control Block associated with a device and the device driver connected to the DCB.
This operation will form what is called a "device chain". More than one filter module may
be placed in the DCB-to-driver chain. These filters bear a very close resemblance to
device drivers. In fact, they also utilize the Device Control Block tables to associate
their memory storage location with the name assigned to them when they are installed.

This section will discuss the activities that take place between a Device Control Block
and a device so that you will better understand the concepts of character I/O. In this
manner, you will have no problem in writing device filters and drivers - at least as far
as DOS interfacing goes.

3.2 The Device Control Block
The Device Control Block (DCB) is used to interface with various logical devices such as
the keyboard, the video display, a printer, a communications line, or other device
defined by your hardware implementation. The DCB is composed of eight bytes divided into
four fields: TYPE, VECTOR, SYSDATA, and NAME. Figure 3-1 illustrates the DCB. The TYPE
field is a one-byte field that describes the capabilities and current state of the DCB
(state indicative of routed, linked, filtered, etc.). The VECTOR field is a two-byte
field that initially is a pointer to the entry-point of the driver or filter module
associated with the DCB. The SYSDATA field is a three-byte field that is used by the

3-2

system to support linking and routing. The NAME field is a two-byte field that contains
the name associated with the device.

T Y P E	VECTOR	SYSDATA	NAME							
_	_	_	_	_	_	_	_	______	_________	______
7 6 5 4 3 2 1 0 15 0 23 0 15 0

Figure 3-1: DCB Fields

The DCB follows a strict format that defines the utilization of all four fields. The
programmer need be concerned only with the TYPE and VECTOR fields. The system requires
sole use of the SYSDATA field. It also maintains the NAME field thus usually
necessitating no programmer intervention. The DCB format must be followed in all Device
Control Blocks established by the user. The following information provides specifications
for each field of the DCB.

3.2.1 TYPE Field - Byte 0
Bit 7 This bit specifies that the Control Block is actually a File Control Block

(FCB) with the file in an OPEN condition. Since there is a great deal of
similarity between DCBs and FCBs, and devices may be routed to files,
tracing a path through a device chain may reveal a "device" with this bit
set, indicating a routing to a file.

Bit 6 This bit specifies that the DCB is associated with a FILTER module. The
VECTOR field then contains the entry point of the filter. A filter
initializer must set this bit when the module is assigned to the DCB.

Bit 5 This bit specifies that the DCB (say device AA) is linked to another
device associated with a DCB (say device BB). The VECTOR field of AA will
point to a dummy LINK DCB (say device LK) which was established by the
system when the LINK library command was invoked. The VECTOR field of LK
then will point to the original VECTOR contents of AA while the SYSDATA
field will contain a pointer to the BB DCB. A picture is said to be worth
a thousand words. The device chain linkage will be illustrated later.

Bit 4 This bit specifies that the device defined by the DCB is routed to another
character-oriented device or file. The VECTOR field will either point to a
DCB if the route destination is a device or it will contain a pointer to
the file's FCB field contained in the route module established by the
system's ROUTE library command.

Bit 3 This bit specifies that the device defined by the DCB is a NIL device. Any
output directed to the device will be discarded. Any input request will be
satisfied with a ZERO return condition.

Bit 2 This bit specifies that the device defined by the DCB is capable of
handling requests generated by the @CTL SuperVisor Call.

Bit 1 This bit specifies that the device defined by the DCB is capable of
handling output requests which come from the @PUT SuperVisor Call.

Bit 0 This bit specifies that the device defined by the DCB is capable of
handling requests for input which come from the @GET SuperVisor Call.

3-3

3.2.2 VECTOR Field - <Bytes 1 - 2>
This field initially will contain the address of the driver routine that supports the
device hardware associated with the DCB. In the case of programmer-installed drivers, the
driver initialization code must load the driver's entry point into the VECTOR field of
its respective DCB. Likewise, when a filter module is established (via the SET library
command), its entry point is placed into the VECTOR field. Once established by either the
system or the driver/module initialization code to point to the module's entry point, the
VECTOR field is then maintained by the system to effect routing, linking, and filtering.

3.2.3 SYSDATA Field - <Bytes 3-5>
These three bytes are used by the system for routing and linking and are unavailable for
any other purpose.

3.2.4 NAME Field - <Bytes 6 - 7>
Byte 6 of this field contains the first character and byte 7 the second character of the
device specification name. The system uses the device name field as a reference in
searching the Device Control Block tables. When a DCB is assigned by the system during a
SET or ROUTE command, this device name field will be loaded by the system with the device
specification name passed in the command invocation. Programs requesting a spare DCB via
the @GTDCB SuperVisor Call (and a binary ZERO name), are responsible for loading this
name field.

If the device has been routed to a file and a search of the device chain shows a TYPE
byte with bit-7 set, then the respective control block is an FCB. In this case, byte 6 of
the field will contain the DRIVE number of the drive containing the file and byte 7 will
contain the Directory Entry Code (DEC) of the file.

3.3 ACCESSING DEVICE CONTROL BLOCKS
The system maintains space in low memory for the storage of the Device Control Block
records. There is space sufficient for 31 records. The first DCB will always be
associated with the system device named *KI. Therefore, a pointer to the first block may
be determined by using the @GTDCB SuperVisor Call as follows:

LD DE,'IK';Load name in reverse order
LD A,@GTDCB ;Identify the SVC
RST 40 ;Invoke the SVC
JP NZ,ERROR ;Transfer if not found

Upon return from the SVC, register HL will contain a pointer to the DCB associated with
*KI. An error will result only if the DCB name field was altered. Spare DCB records are
filled with binary zeroes. Therefore, a spare DCB record may be located by loading
register pair DE with a binary zero value prior to issuing the SVC.

The DOS command "DEVICE (B=Y)" can be used to obtain a linkage map of all device chains.
As can be observed from such a listing, all 31 control blocks are not in use. Additional
devices are defined by using the SET library command. Any device assigned by the user to
a spare control block, may be removed from the system after the device is RESET by using
the "REMOVE devspec" command. The DOS defined devices are protected and cannot be
removed.

3.4 DEVICE CHAIN ILLUSTRATIONS
Before we can illustrate the device chain, it is necessary to first reiterate the memory
module header protocol as required by the system. It is essential that this protocol be
used for all modules placed into protected memory so that the system can properly deal
with module access and device I/O.

3-4

3.4.1 Header Protocol
Each module placed into protected memory will incorporate a facsimile of the following
code at the start of the module:

ENTRY JR BEGIN ;Branch around linkage
STUFHI DW $-$;To contain last byte used
DB MODBGN-ENTRY-5 ;Calculate length of 'NAME'
DB 'MODNAME' ;Name of this module
MODDCB DW $-$;To contain DCB pointer for module
SPARE DW 0 ;Reserved by the DOS

.

. ;Any data area needed
BEGIN EQU $;Followed by module code

Chapter 8, the appendix, is another source of information concerning the header protocol.
It is sufficient for the illustration of device chains to understand that the MODDCB will
contain a pointer that points to the Device Control Block established for the module
during the execution of the SET library command. This pointer is passed in register pair
DE to the module's initialization code by SET. The programmer writing the module code
adds a routine which loads this valuue into MODDCB.

3.4.2 Sample DCB Structure
For the purpose of this illustration, let's imagine three active DCB s. The first DCB is
associated with the printer driver and has device specification of "*PR" (its devspec).
We have also installed a filter via the SET command that performs a backspace followed by
the output of a slash when it detects an ASCII zero (0). This filter has a devspec of
"*S0". Lastly, we have a filter that toggles a boldface mode for a printer. This filter
has a devspec of "*BF". To avoid confusion in the illustration, the devspec will be used
to reference the DCB and the module names PRINTER, SLASH0, and BOLDFACE will be used to
identify the entry point of the driver or filter module.

We can now show this arrangement of DCB contents and module MODDCB contents as follows:

==
| TYPE VECTOR NAME MODULE/MODDCB |
| ---- ------ ---- ________________ |
06 PRINTER PR	PRINTER/*PR	

47 SLASH0 S0	SLASH0/*S0	

47 BOLDFACE BF	BOLDFACE/*BF	

==

Figure 3-2: Initial DCB Table

Note that the DCBs in figure 3-2 associated with the filters have bit-6 of the TYPE byte
set to indicate that they are filters. Also note that the MODDCB pointer points to the
DCB which points to the module. Where a filter's MODDCB is pointing to the DCB of the
filter, this is indicative of an inactive filter.

3.4.3 Filtering
Filters are written (as you will later learn) to perform all I/O via the @CHNIO
SuperVisor Call. This SVC uses the contents of MODDCB within the filter invoking the SVC.
Thus, the filter I/O is independent of any address by being handled completely through
the SVC. If you perform a system command such as:

3-5

FILTER *PR USING *S0

the operating system will swap the first three bytes of the *PR DCB with the *S0 DCB.
This arrangement will establish that shown in figure 3-3.

==
| TYPE VECTOR NAME MODULE/MODDCB |
| ---- ------- ---- ________________ |
47 SLASH0 PR	PRINTER/*PR	

06 PRINTER S0	SLASH0/*S0	

47 BOLDFACE BF	BOLDFACE/*BF	

==

Figure3-3: DCB Table Modified

Let's follow what happens to an @PUT which references the *PR device. The system passes
control to SLASH0 (which is pointed to by the *PR vector). This filter performs its
character transformation, as required, and sends characters down the chain by picking up
the pointer contained in its MODDCB (a pointer to the *S0 DCB) then issuing the @CHNIO
SVC. The SVC handles the call by passing control to PRINTER which is the pointer now
stored in the VECTOR field of *S0.

If we now try to issue the command:

FILTER *PR USING *S0

the system will prohibit it since the *S0 Device Control Block does not show up as a
filter (bit-6 of the TYPE byte is reset!). However, if we filter *PR using the *BF
device, we achieve the arrangement in figure 3-4 after the system swaps the first three
bytes of *PR with the first three bytes of *BF.

Examine the arrangement in figure 3-4 closely. Note that the contents of MODDCB for each
module are exactly what they were initialized to. Even though the *PR device has been
twice filtered, the module itself needs absolutely no change whatsoever. An *PUT to the
*PR device (say with an *PRT SVC) may be a little more complicated now, but functions
perfectly well. The system first passes control to BOLDFACE (which is pointed to by the
*PR vector). This filter performs its necessary device stream massaging and sends
characters down the chain by picking up the pointer contained in its MODDCB (a pointer to
the *BF DCB) then issuing the @CHNIO SVC. The SVC handles the call by passing control to
SLASH0 which is the pointer now stored in the VECTOR field of *BF. The SLASH0 filter
performs its character transformation, as required, and sends characters down the chain
by picking up the pointer contained in its MODDCB (a pointer to the *S0 DCB) then issuing
the @CHNIO SVC. The SVC handles the call by passing control to PRINTER which is the
pointer now stored in the VECTOR field of *S0. Upon completion, a series of RET
instructions pass the return code back through the modules making up the chain.

3-6

==
| TYPE VECTOR NAME MODULE/MODDCB |
| ---- ------- ---- ________________ |
47 BOLDFACE PR	PRINTER/*PR	

06 PRINTER S0	SLASH0/*S0	

47 SLASH0 BF	BOLDFACE/*BF	

==

Figure 3-4: DCB Table Further Modified

It is interesting to observe that the process of removing the filters from the device
chain is exactly the same as the process to add them into the chain. We can unhook the
filters by exchanging the first three bytes of the DCBs in the order of last-in first-out
(LIFO). Thus if you exchange the *PR and *BF Device Control Block TYPE and VECTOR fields,
you will obtain the arrangement previously shown in figure 3-3. The RESET library command
does this for the entire chain.

By now you should be able to notice that we could equally as well remove just the SLASH0
filter if we swap the bytes associated with the *BF and *S0 Device Control Blocks! All
that is needed is a facility to do the following:

1. Identify what filter (by module name) is to be removed;
2. Locate the filter in memory via the @GTMOD SuperVisor Call;
3. Obtain the MODDCB pointer to its Device Control Block;
4. Scan through all DCBs to find the DCB pointing to the filter;
5. Then swap the three bytes.

3.4.4 Routing
Routing conveys the facility of I/O redirection. This function allows programs to be
independent of the physical device actually handling the I/O. By maintaining a constant
reference within a program to a particular DCB, the physical I/O can be channeled to some
other device completely transparent to the program. This is achieved through altering the
connection between the DCB and its initial driver by reconnecting the DCB to some other
driver. The operating system handles all of the functions of implementing the DCB
alteration when the ROUTE library command is invoked. The "routed-to" device may be
another DCB identified by a devspec or it could be a disk file identified by a filespec.
Let's look at an example.

If we, for instance, invoke the command:

ROUTE *PR TO FILE/TXT:3

the DOS performs a two-stage process. First, it establishes a 32-byte File Control Block
and 256-byte buffer for the FILE/TXT:3 disk file. It places this "data" into high memory
prefixed with the header protocol. Second, it saves the "route-from" VECTOR and TYPE
fields in the SYSDATA field of the DCB while it revises the VECTOR to point to the
"routed-to" FCB. The TYPE field is also altered to show a ROUTE is in effect. The DCBs
will now look like figure 3-5.

3-7

===
| TYPE VECTOR SYSDATA NAME MODULE/MODDCB |
| ---- -------- ---------- ---- ________________ |
10 FCB-FILE PRINTER/06 PR	PRINTER/*PR	

80 31-bytes of FCB data FCB		
===

Figure 3-5: DCB Table After ROUTE

Let's now follow an output request to the *PR device. The DOS device I/O handler will
recognize the ROUTE bit (bit-4 of the TYPE byte) and update the register linkage so that
the FCB will be pointed to instead of the DCB. Noticing that the control block now
indicates a disk file (bit-7 of the TYPE byte), the I/O handler will pass control to the
character I/O file routines.

The action taken by the operating system to reset a DCB that has been routed is to first
close the file, if a filespec was the initial "route-to", then recover the original TYPE
and VECTOR from the SYSDATA field.

3.4.5 Filtering a Routed Device
Let's suppose we have a text file that needs line feeds removed (it may be a CP/M file
that uses CR-LF as the end-of-line protocol). We could write a program to read the file
and write out to another file all characters that are not a line feed. We could also use
a trap filter that is handy. We want to be able to filter the file with this trap filter.
Using the routing identical to that shown in figure 3-5, establish the trap filter and
invoke it with:

SET *LF USING TRAP (CHAR=10)
FILTER *PR USING *LF

Figure 3-6 will now reflect the DCB structure after this series of commands. It is now
easy to LIST the source file with the (P,T=N) option. This will direct a copy of the file
to the *PR device (while suppressing tab expansion). As can be observed from the figure,
the device handler passes *PR I/O requests to the TRAP filter. After performing whatever
filtering is necessary, the @CHNIO request will reference the *LF Device Control Block
(which is pointed to by the MODDCB field). The device handler then notes that the ROUTE
bit is set and continues to control the @PUT request as was done under figure 3-5. A
simple "RESET *PR" upon completion will close the filtered FILE/TXT.

===
| TYPE VECTOR SYSDATA NAME MODULE/MODDCB |
| ---- -------- ----------- ---- ________________ |
47 TRAP PRINTER/06 PR	PRINTER/*PR	

80 31-bytes of FCB data FCB ________________		
10 FCB-FILE LF	TRAP/*LF	

===

Figure 3-6: Filtering a Route

3.4.6 Linking
Linking is handled by establishing a link Device Control Block storage area for each LINK
command invoked. For example, if you "LINK *DO TO *PR", we can illustrate the DCB area as

3-8

shown in figure 3-7. The *DO Device Control Block now vectors to the newly established
*L0 DCB while the TYPE byte identifies the link. Notice that *L0 has both the VIDEO
vectors and a pointer to the *PR DCB (we can conceptualize this as a two legged fork).
The system's device handler recognizes that a link is in effect (from *DO's TYPE byte)
whereupon it establishes a fork via the link DCB, *L0. It uses the third byte of L0's
SYSDATA field to store the direction indicator. After a return from VIDEO without error,
the device handler takes the other fork leg (to *PR).

===
| TYPE VECTOR SYSDATA NAME MODULE/MODDCB |
| ---- -------- --------- ---- ________________ |
20 *L0 DO	VIDEO/*DO	

06 PRINTER PR	PRINTER/*PR	

07 VIDEO *PR L0		
===

Figure 3-7: Linking Devices

The legs of the fork are entered based on the I/O direction and the return code from a
leg. @PUT requests will be sent to the "left" leg of the fork. Providing no error is
encountered, the "right" leg of the fork will be entered. The return code passed back to
the caller will be either an error from the left leg, an error from the right leg, or a
no-error condition. Requests for @GET, will be passed first to the left leg. Only if the
left leg has no input available will the right leg be entered. @CTL requests are handled
like @PUT.

Linking can be applied to a devspec that has been filtered, routed, or linked. There is
no restriction on combinations. Thus, you can link a device that is already linked and
filtered and routed. Figure 3-8 depicts the result of linking a device that has already
been routed. It is left up to the reader as an exercise to derive the series of commands
that composed the associated DCBs/FCB as well as tracing through the device chain for
I/O.

===
| TYPE VECTOR SYSDATA NAME MODULE/MODDCB |
| ---- -------- --------- ---- ________________ |
20 *L1 DO	VIDEO/*DO	

80 31-bytes of FCB data FCB		
10 FCB/FILE DD		
07 VIDEO *DD L1		
===

Figure 3-8: Linking a Routed Device

3.4.7 Device Chain Hierarchy
It is possible for the Device Control Block TYPE byte to have more than one bit set in
the positions 3-7 (positions 0-2 usually have multiple bits set depending on the I/O
supported by the driver). Because of this, the system must utilize a priority level to
indicate what function is to be interpreted. The device I/O handler hierarchy is
illustrated in figure 3-9.

3-9

====================================
| Bit-7: Disk File character I/O |
| Bit-3: NIL device - no I/O |
| Bit-4: ROUTE to DCB or FCB |
| Bit-5: LINK to 2nd DCB |
| Bit-6: FILTERed DCB or filter |
====================================

Figure 3-9: DCB Hierarchy

3.4.8 Device Chain Summary
The preceding discussion should shed a great deal of light on the handling of device I/O
by the operating system. You should also understand that in order to accomplish this
device independence and flexible handling of character I/O, the programmer of device
drivers and filters must adhere to a strict protocol of handshaking the modules with the
operating system. The next section will explore device I/O looked at from the standpoint
of the modules and drivers. Once you grasp these requirements, you will be in total
control of filters and device drivers.

3.5 DEVICE DRIVER/FILTER TEMPLATE
The system contains command level procedures that provide easy access to device
references so that modifications may be made to the way in which devices are treated by
the system. All devices require some type of driving program (a device driver) that is
used to handshake the device with the system and cater to the special features and
requirements of the device hardware. Some drivers are already implemented within the
operating system to handle standard devices. For instance, drivers for handshaking the
keyboard, video display, parallel printer port, and RS-232 serial port are included with
the system.

Some devices are completely supported with the existing drivers in the total DOS
environment. Other devices may need a little more support. The characteristics of a
driver may be modified by the introduction of a FILTER. For instance, suppose your
printer required a line feed upon receipt of a carriage return to advance the paper. The
printer driver does not provide this function. Instead of writing a completely new
printer driver, only a filter need be included to add that single function (the FORMS/FLT
filter which incorporates this function is usually provided with the system).

The DOS provides two commands to aid in interfacing drivers and filters. The SET command
is used to define a new device, re-define an existing device, or install a filter module
while assigning it a device name. FILTER is used to place the installed filter into an
existing device chain.

The SET command takes the device specification from the command line "SET *XY to
filespec" and searches the Device Control Block tables for a matching device name. If the
requested device is not defined in your configuration, SET establishes a Device Control
Block for the new device. Control then passes to the DRIVER or FILTER with register pair
DE containing the address of the Device Control Block record assigned to the "SET"
device.

Register pair HL points to the command line character separating the DRIVER/FILTER
program filespec and optional parameters. This provides the module initialization
routines with the opportunity of parsing a parameter string by using a parameter table
and the @PARAM SuperVisor Call. SET provides a default file extension of /FLT since the
function of adding filters to the system is the more usual case.

The SET and FILTER commands are designed such that the DRIVER or FILTER program should
first load into the User Program Region (starting at X'3000'). After parsing any options
or parameters, the module initialization routine automatically relocates the resident

3-10

module to high memory (or low memory if sufficient space is available - see the section
on Placing Disk Drivers in chapter 4). HIGH$ (or the Driver Input/Output Region pointer)
must be properly set after your module relocates.

Samples of filters are provided in Chapter 8, the appendix, which should demonstrate the
technique of writing the relocating driver portion of your routine. The remaining
sections in this chapter discuss the handshaking and initialization requirements
necessary for device drivers and filters.

3.5.1 I/O Primitives
Device independence has its roots in "character I/O". The term shall apply to any I/O
passed through a device channel, one character or byte at a time. Three primitive
routines are available at the assembly language level for byte I/O. Primitive is not used
here to imply rudimentary but rather elementary. Just as the atom is considered a basic
building block of molecules, these byte I/O primitives can be used to build larger
routines. The three DOS SuperVisor Calls are designated @GET , @PUT, and @CTL. @GET is
used to input a byte from a device or file. @PUT is used to output a byte to a device or
file. @CTL is used to communicate with the driver routine servicing the device (the
character file I/O routines ignore @CTL requests).

Other SuperVisor Calls are available that perform byte I/O, such as @KBD (scan the *KI
device and return the key code if a character is available), @DSP (send a character to
the *DO device), and @PRT (send a character to the *PR device). These functions operate
by first loading register pair DE with a pointer to a specific Device Control Block (DCB)
assigned for use by the device, then issuing an @GET or @PUT SuperVisor Call for the
respective input or output requests.

When the DOS device handler passes control over to the device driver routine, the Z-80
flag conditions are unique for each different primitive. This provides a method that the
drivers can use to establish what primitive was used to access the routine and thus
distribute the I/O request to the proper driver or filter subroutine - according to the
direction of the request - input, output, or control! Figure 3-10 illustrates the FLAG
register conditions prevailing upon entry to a driver or filter.

==================================
| |
| C,NZ = @GET primitive |
| Z,NC = @PUT primitive |
| NZ,NC = @CTL primitive |
| |
==================================

Figure 3-10: Flag Conventions

Register B contains the I/O direction code (1 = GET, 2 = PUT, or 4 = CTL) while register
C will contain the character code that was passed in an @PUT or @CTL SuperVisor Call.
Register IX will point to the TYPE byte of the Device Control Block being referenced.
Registers BC, DE, HL, and IX have been saved on the stack and thus are available for use.
Remember that any given module may have been filtered or linked; therefore, do not expect
the DCB address in IX to be a constant over time. If the module is a filter, it will be
invoking the @CHNIO SuperVisor Call. Thus it will be important to save those registers
that must stay unchanged prior to invoking @CHNIO.

3.5.2 I/O Separation
Now let's move on to the device driver linkage used to separate out the @GET, @PUT, and
@CTL calls. Remember the FLAG register direction conditions shown in figure 3-10 that
were set according to the primitive byte I/O routine that got us to the driver. These
conditions provide the key to the separation process. Consider the following protocol for
the driver or filter header.

3-11

 ENTRY JR BEGIN ;Branch around linkage
 STUFHI DW $-$;To contain last byte used
 DB MODDCB-BEGIN-5 ;Calculate length of 'NAME'
 DB 'MODNAME' ;Name of this module
 MODDCB DW $-$;To contain DCB pointer for module
 DW 0 ;Reserved by the DOS
 BEGIN EQU $
 ;*=*=*
 ; Actual module code start
 ;*=*=*
 JR C,WASGET ;Go if @GET request
 JR Z,WASPUT ;Go if @PUT request
 JR WASCTL ;Was @CTL request

At the entry of the driver, an absolute relative jump instruction executes which causes a
branch around some data. Ignore, for a moment, the header data which is discussed in the
Chapter 8, appendix. At the label "BEGIN", a test is made on the CARRY FLAG. If the CARRY
was set, then it must have been the result of an input request (@GET). Thus, an input
request could be directed to that part of the module which handles character INPUT.

If the request was not from the @GET primitive, the CARRY will not be set. The next test
is if the ZERO FLAG is set. The ZERO condition prevailed when an @PUT primitive was the
initial request. Thus the jump to WASPUT can transfer to that part of the module that
deals specifically with character OUTPUT.

If neither the ZERO nor CARRY flags are set, the routine falls through to the next
instruction, a jump to WASCTL - that part of the module that would handle @CTL requests.
Obviously, the module code that handles @CTL requests could be placed immediately after
the first two tests thereby obviating the need for the "JR WASCTL". Some modules are
written to assume that @CTL requests are to be handled exactly like @PUT requests
although this is not recommended. The processing of @CTL requests is entirely up to the
function of the driver and the author thereof with the exception that the author should
not deviate from the functions identified in the @CTL INTERFACING section. When a device
has been routed to a disk file, the DOS will ignore @CTL requests. That is, the @CTL
codes will not be written to the disk file. The functions of @CTL requests are covered as
a separate topic later in this chapter.

3.5.3 Device Driver/Filter Return Codes
One last topic needs to be discussed relating to drivers - the subject of register
handshaking conventions. On @GET requests, the character input should be placed in the
accumulator. On output requests (either @PUT or @CTL), the character is obtained from
register C. It is extremely important for drivers and filters to observe return codes.
Specifically, if the request is @GET and no byte is available, the driver returns an NZ
condition with the accumulator containing a zero (i.e. OR 1 : LD A,0 : RET). If a byte is
available, the byte is placed in the accumulator and the Z-flag is set (i.e. LD A,CHAR :
CP A : RET). If there is an input error, the error code is returned in the accumulator
and the Z-flag is reset (i.e. LD A,ERRNUM : OR A : RET). On output requests, the Z-flag
is set if no output error occurred. The accumulator may be loaded with the character that
was output; however, applications invoking an @PUT cannot depend on the accumulator
containing the output character on return from the SVC - the character will, however,
still be contained in the C register! In the case of an output error, the accumulator
must be loaded with the error code and the Z-flag reset as shown above.

3.5.4 Filter Interfacing
A filter module is inserted between the DCB and driver routine (or between the DCB and
the current filter when applied to a DCB already filtered). The application of insertion
is performed by the DOS FILTER command once the filter module is resident and associated

3-12

with a device name. The function of residing a filter module is a responsibility shared
by the SET library command and the programmer's filter initialization routine.

The usual linkage for a filter is to access the chained module by calling the @CHNIO
SuperVisor Call with specific linkage data in registers IX and BC. Register IX is loaded
with the filter's DCB pointer obtained from the memory header MODDCB pointer. Register B
must contain the I/O direction code (1 = GET, 2 = PUT, 4 = CTL). This code is already in
register B when the filter is entered. You can either keep register B undisturbed or load
it with the direction code based on the primitive request. Also, output requests will
expect the output character to be in register C.

3.5.5 Filter Initialization
The DCB pointer obtained from MODDCB for the interfacing, is originally obtained from the
operating system. It is passed in register DE by the SET command and is loaded into
MODDCB by your filter initialization routine. The initialization routine also relocates
the filter to high (or low) memory while adjusting any absolute address reference with a
suitable relocation routine. The DOS takes care of loading the DCB's NAME field with the
associated device name passed in the SET command. The filter initializer must attach
itself to the DCB assigned by the SET command by loading the TYPE and VECTOR fields. The
TYPE field is loaded with an ORing of the filter bit (bit-6) and any valid direction bits
(bits 0-2). If the initialization front end transfers the DCB pointer from DE to IX and
loads the filter's entry address into register pair HL, the following code could be used
to establish the TYPE byte and vector for a filter which supports GET, PUT, and CTL:

 LD (IX),40H.OR.7 ;Init DCB type to
 LD (IX+1),L ; FILTER, G/P/C I/O,
 LD (IX+2),H ; & stuff vector

One final point concerns a test that should be made by the filter initializer. The
operating system permits the execution of any load module. A filter program is a load
module. To guard against the execution of a filter program by inadvertently entering its
full file specification at DOS Ready, the system provides the programmer with an
indicator that execution is under control of the SET command. When SET passes control to
a filter program, it will set bit-3 of the CFLAG$ (the system request bit). Thus, by
testing this bit upon entry to the program, an error exit can be taken if the system
request bit is not set. An error message of the form:

Must install via SET

can be logged and the program aborted. The system automatically resets the system request
bit upon regaining control at DOS Ready.

3.5.6 A Partial Filter
A filter module can operate on input, output, control, or any combination based on the
author's design. The memory header provides a region for user data storage conveniently
indexed by the module. An illustration of a filter follows. The purpose of the filter is
to add a line feed on output whenever a carriage return is to be sent. Although the
filter requires no data storage, the technique for accessing data storage is shown. Pay
close attention to the method of passing characters to the device chain (@CHNIO).

ENTRY JR BEGIN ;Branch to start
DW FLTEND-1 ;Last byte used by module
DB 6,'SAMPLE' ;Name length and name

MODDCB DW $-$;Ptr to DCB loaded by initialization
DW 0 ;Reserved

;*=*=*
; Data storage area for your filter
;*=*=*
DATA$ EQU $

3-13

DATA1 EQU $-DATA$
DB 0 ;Data storage

DATA2 EQU $-DATA$
DB 0 ;Data storage

;*=*=*
; Start of filter
;*=*=*
BEGIN JR Z,GOTPUT ;Go if @PUT
;*=*=*
; @GET and @CTL requests are chained to the next module
; attached to the device. This is accomplished by falling
; through to the @CHAINIO call. Note that the sample filter
; does not effect the B register, so the filter does not
; have to load it with the direction code.
;*=*=*
FLTPUT PUSH IX ;Save our data pointer

LD IX,(MODDCB) ;Grab the DCB vector
RX01 EQU $-2

LD A,@CHNIO ; & chain to it
RST 40
POP IX
RET

;*=*=*
; Filter code
;*=*=*
GOTPUT LD IX,DATA$;Base register is used to
RX02 EQU $-2 ; index data as (IX+DATA1),...
;

LD A,C ;P/u char to test
CP CR ;If not CR, put it
JR NZ,FLTPUT
CALL FLTPUT ; else put it

RX03 EQU $-2
RET NZ ;Back on error
LD C,LF ;Add line feed
JR FLTPUT

FLTEND EQU $
;*=*=*
; Relocation table
;*=*=*
RELTAB DW RX01,RX02,RX03
TABLEN EQU $-RELTAB/2

The relocation table, RELTAB, would be used by the filter initialization relocation
routine. Complete filters are listed in Chapter 8, the appendix.

3.5.7 External Access of Module Data
It is sometimes necessary to access the data region of a resident module from outside the
module. Perhaps a utility to alter the data is useful (for instance, the SETCOM command
alters the data of the COM driver supplied with the system. The @GTMOD SuperVisor Call is
used to obtain two pointers. One points to the entry point of the module while the other
points to the MODDCB field. If the data is located immediately following the reserved
word in the module header, incrementing the MODDCB pointer by four will point it to the
data area. The utility uses the module name assigned in the header to locate the module
in memory. As an example, let's illustrate an update to DATA1 in the above filter.

 LD DE,FLTSTR$;Point to module name
 LD A,@GTMOD ;Identify the SVC
 RST 40
 JR NZ,NOTRES ;Process "module noot resident"
 LD HL,4 ;Use pointer in DE to
 ADD HL,DE ; index past MODDCB & reserved

3-14

 LD A,(VALUE) ;P/u your new value
 LD (HL),A ; & stuff into resident module
 .
 FLTSTR$ DB 'SAMPLE',3 ;Search string

3.6 @CTL INTERFACING TO DEVICE DRIVERS
This section discusses the @CTL functions supported by the system supplied device
drivers. @CTL functions are invoked by loading register pair DE with a pointer to the
Device Control Block (DCB), loading the function code into register C, and issuing the
@CTL SuperVisor Call. The DCB address can be located by either using the @GTDCB SVC or
OPENing a File Control Block containing the device specification and using the FCB
address.

The DOS has assigned function codes for specific operations. Although these operations
are not universal across all drivers, the designated function code should be used only
for the operation assigned. Rarely will you find a driver that utilizes all of these
codes. A driver that accepts a function code to perform an operation should provide a
return code as if the request was @PUT. Where a driver does not wish to accept a specific
code or codes, it should return a "no-error" result. Function codes in the range <0-
31,255> are reserved by the operating system. Function codes in the range <32-254> are
available for programmer use. The following operations are assigned function codes:

CODE OPERATION
0 Return status of device (Z = available, NZ = not available). Where

applicable, return an image of the status in the accumulator.
1 Request a <BREAK> or force an attention interrupt.
2 Execute any driver initialization code.
3 Reset any driver buffers and clear any pending I/O.
4 Interface a "wakeup" vector for interrupt driven drivers. Register IY should

contain the execution transfer address to be passed control after the driver
handles the interrupt. On return from the @CTL call, register IY will contain
the previous "wakeup" vector. If a zero is passed in register IY, the
"wakeup" vectoring will be disabled.

5 Reserved by the DOS.
6 Reserved by the DOS.
7 Reserved by the DOS.
8 Return the next character in the input buffer but do not empty it from the

buffer. A return condition of A = 0 and NZ indicates no character is pending.
A <> 0 and NZ indicates an error while Z indicates success while A contains
the character.

9-31 These codes are reserved by the DOS.

The system-supplied drivers support some of these functions. The following sections cover
what control functions are supported and suggests possible uses. The module name can be
used with the @GTMOD SuperVisor Call to obtain the entry point of the driver. This is
useful to obtain access to the data areas associated with each driver.

3.6.1 Keyboard driver [system driver assigned to *KI]
A function value of X'03' will clear the type-ahead buffer. This serves the same purpose
as repeated calls to @KBD until no character is available. A function value of X'FF' will
remain undocumented as its use is proprietary to Tandy Corporation and its function is
not supported across all licensed versions of LDOS Version 6. All other function values
are treated as @GET requests.

The module name assigned to this driver is "$KI". Its data area includes the following:

3-15

Offset Contents
+0 Contains the last character entered.
+1 Contains the repeat time check which is the system's timer value that when

reached will result in a repeat of the last character if the keycode scanned
has not changed.

+2 Contains the waiting time in timer units that must transpire before a
character can initially be repeated. This value is altered by SETKI (W=dd).

+3 Contains the repeat rate in timer units. This value is altered by SETKI
(R=dd).

3.6.2 Video driver [system driver assigned to *DO]
All @CTL requests are treated as if they were @PUT requests.

The module name assigned to this driver is "$DO". Its data area includes the following:

Offset Contents
+0 Bits 0-2 contain the number of video lines to protect against scrolling. Bit

3 denotes the action to be taken for character values in the range <192-
255>. If set, the values are treated as displayable characters. If reset,
the values are treated as space compression codes in excess 192 (i.e. 0-63).
Bit 4 will denote the action to be taken for character values in the range
<1-31>. If set, the value is interpreted as a displayable character. If
reset, the value is treated as a video function code as identified in your
operating system user manual. Bits 5-7 are reserved by the DOS.

+1 Contains the low order address of the cursor. You must use the @VDCTL
SuperVisor to reference the cursor by row,column.

+2 Contains the high order address of the cursor. You must use the @VDCTL
SuperVisor to reference the cursor by row,column.

+3 Contains the character that is currently at the cursor position.
+4 Contains the character code defining the cursor.

3.6.3 Printer driver [system driver assigned to *PR]
The printer driver is transparent to all code values when requested by the @PUT
SuperVisor Call. That means that all values from X'00' through X'FF' (0-255) can be sent
to the printer. The printer driver accepts a function value of X'00' via the @CTL request
to return the printer status. If the printer is available, the Z-flag will be set and the
usual A register status image is an X'30'. If the Z-flag is reset, the accumulator will
contain the four high-order bits of the parallel printer port (bits 4-7).

The module name assigned to this driver is "$PR". There exists no data area within the
printer driver.

3.6.4 Forms Filter [non-resident system filter for forms control]
If the FORMS filter is attached to the *PR device, then various codes are trapped and
used by the filter according to user options as follows:

Code Filter Action
X'0D' Generates a carriage return and optionally a line feed (ADDLF). It will form

feed as required.
X'0A' Is treated the same as X'0D'.
X'0C' Will form feed (via repeated line feeds if soft form feed).
X'09' Will advance to the next tab column.
X'06' Will set top-of-form by resetting the internal line counter to zero.

Other character codes may be altered depending on the user translation option (XLATE).

The FORMS filter's module name is "$FF". Its data area includes the following:

3-16

Offset Contents
+0 Contains the maximum lines per page.
+1 Is used by the filter as a line counter.
+2 Contains the maximum number of lines to print prior to a FORM FEED

operation.
+3 Is used by the filter as a character counter.
+4 Contains the character value that is to be translated.
+5 Contains the character value that <+4> is to become.
+6 Contains the number of spaces to indent after an automatic NEWLINE is

issued.
+7 Bit 0 specifies that a LINE FEED is to be added after each carriage RETURN.

Bit 1 specifies the mode of FORM FEED - a 0 indicates SOFT (multiple line
feeds) while a 1 indicates HARD (send X'0C' to the driver).

+8 Contains the maximum number of characters to print on a line prior to
issuing an automatic NEWLINE. A value of zero indicates that no automatic
NEWLINE is to be issued.

+9 Contains the column of the left hand margin. The filter will provide this
count of spaces after a physical carriage RETURN.

3.6.5 COM driver [non-resident system driver for the RS-232C]
This driver handles the interfacing between the RS-232C hardware and character I/O
(usually the *CL device).

An @CTL function value of X'00' will return an image of the RS-232 status register in the
accumulator. The Z-flag will be set if the RS-232 is available for "sending" (i.e.
transmit holding register empty and flag conditions matching as specified by the default
protocol or that established by the user via SETCOM). A function value of X'01' will
transmit a "modem break" until the next character is @PUT to the driver. A function value
of X'02' will re-initialize the serial port hardware to the values last established by
SETCOM. A function value of X'04' will enable/disable the WAKEUP feature. All other
function values are ignored and the driver will return with register A containing a zero
value and the Z-flag set.

The WAKEUP feature deserves additional treatment since it can be quite useful for
application software specializing in communications. The RS-232 hardware is usually
equipped with the capability of generating a machine interrupt when any of three
conditions prevail: transmit holding register empty, received character available, or an
error condition has been detected (framing error, parity error, etc.). The COM driver
makes use of the "received character available" interrupt to take control when a fully-
formed character is in the receive holding register. The COM driver services the
interrupt by reading the character and storing it in a one-character buffer. COM would
then normally return from the interrupt while it awaits the next @GET request to take the
character.

An application can request that instead of returning from the interrupt, control is
passed to the application for IMMEDIATE ATTENTION. It is important to note that this
action would be occurring during interrupt handling and any processing by the application
must be kept at a minimum before control is returned to COM via an RET instruction.

If you use an @CTL function value of X'04', then register IY must contain the address of
the handling routine in your application. Upon return from the @CTL request, register IY
will contain the address of the previous WAKEUP vector. This should be restored to the
COM driver when your application is finished with the WAKEUP feature.

When control is passed to your WAKEUP vector upon detecting a "receive character avail-
able" interrupt, certain information is immediately available. Register A will contain an

3-17

image of the serial port UART status register. The Z-flag will be set if a valid
character is actually available. The character, if any, is in the C-register. Since
system overhead takes a small amount of time in the @GET SuperVisor Call, you may only
have to @GET the character via standard device interfacing. This will ensure that any
filtering or linking in the *CL device chain will be honored. If, on the other hand, your
application is attempting to transfer data at a very high rate (9600 baud or higher), you
may need to bypass the @GET SuperVisor Call and use the character immediately available
in the C-register. Note that this will ignore any device chain linkage.

The module name of the COM driver is "$CL". Its data area includes the following:

Offset Contents
+0 Contains the handshake mask established according to the default

conventions (or those established via SETCOM). This mask is used by COM and
needs no concern from the programmer.

+1 Contains the serial port control image (this image may turn out to be
dependent on specific RS-232 hardware.

Bit 7 Parity [1 = EVEN; 0 = ODD]
Bits 6 & 5 Word length [00 = 5; 10 = 6; 01 = 7; 11 = 8]
Bit 4 Number of STOP bits [1 = 2 bits; 0 = 1 bit]
Bit 3 Parity enable/disable [1 = disable; 0 = enable]
Bit 2 Transmit data [1 = enable; 0 = BREAK]
Bit 1 Data Terminal Ready lead [0 = ON; 1 = OFF]
Bit 0 Request To Send lead [0 = ON; 1 = OFF]

+2 Contains the code for the baud rate.
+3 Flag to indicate KFLAG$ support [1 = ON; 0 = OFF] Effective with LDOS

6.2.0, this byte contains the BREAK character code, LOGBRK. If non-zero,
then reception of that byte value from the communications line will cause
the BREAK bit of the KFLAG$ to be set. If zero, no input character will be
interpreted as a BREAK.

+4 One-character buffer flag [80H = no character; 0 = character]
+5 Storage for the one-character buffer.

4-1

4. DISK DRIVE INPUT/OUTPUT INTERFACING
4.1 GENERAL DISK DRIVE CONFIGURATION
This chapter is designed to fully explain the purpose of the Disk Controller Com-
munications SuperVisor Calls. It will also completely describe the fields constituting
the Drive Control Table. We will cover the protocol linkage that interfaces the disk
driver to the DOS. Finally, we will discuss some of the concepts that are associated with
interfacing hard disk drives. There are two reasons for this chapter. On one hand, you
may be interested in using the disk primitives to write disk-oriented utility programs. A
good foundation in the functions of the controller primitives is essential. On the other
hand, you may have the need to write a disk driver that supports a hard disk controller.
In this case, it is essential to understand the requirements of the system for com-
municating with disk devices. Before we can begin these topics, we must gain a knowledge
of the configuration of disk storage devices.

The Disk Operating System incorporates the term "disk" because the operating system is
associated with and directly supports disk drive storage devices. Although many users of
small microcomputers may be used to systems with two or three disk drives, the Version 6
DOS supports up to eight disk storage devices. The most typical type of disk drive used
in systems running Version 6 is the floppy disk drive. The hardware that interfaces the
floppy disk drive to the computer is called a Floppy Disk Controller (FDC). The
controller includes all of the electronics necessary to control and translate operating
system commands into control pulses which the drive uses to perform mechanical actions
(such as head stepping, drive select, head load, etc) and data transfer.

The floppy disk drives are usually connected to the computer in a multiplexed arrange-
ment. This means that all data and control signals share a common cabling. Where more
than one disk drive is connected to the cable, a means of uniquely selecting one drive at
a time must be provided. Over the years, a standard of drive selection has been developed
that all floppy disk drives adhere to. This standard incorporates four separate drive
select lines between the computer and all disk drives. These drive select lines are
designated DS0, DS1, DS2, and DS3. Each disk drive is then jumpered to connect to only
one of the drive select lines. Sometimes the drives connect to all of the lines while
each plug on the cable severs all select lines but one - each cable plug a different
select line. Thus, the computer hardware will, in general, support the handling of four
floppy disk drives [some companies manufacture a multiplex device that uses the four
drive selects as a binary number thus multiplexing up to 15 floppy drives].

Although the typical hardware configuration supports four floppy disk drives, the DOS has
provisions for referencing eight distinct logical drives numbered 0-7. We use the term
"logical" in case we have a single drive that is partitioned into multiple drives with
each partition being referenced by a different drive number. The four extra positions are
usually used with installations that connect hard disk drives in addition to the
floppies. The DOS stresses device independence. Disk drives are treated no differently.
In order to gain a high level of independence, the DOS uses a standardized set of
SuperVisor Call functions we will term "Disk Controller Communications". These SVCs are
primitive functions that should provide all of the activities needed to communicate I/O
requests to the disk controller that's interfacing a disk drive.

The system also maintains a Drive Control Table (DCT) that stores the parameters
associated with each of the eight logical drives. Disk drive parameters refer to how the
total storage space on a drive is divided up into addressable units. Floppy disk drives
use a removable flexible media which has one or two surfaces coated with a magnetic layer
of particles. Hard disk drives use either fixed rigid platters or removable cartridges
that contain rigid platters also containing magnetic layers of particles. Each platter of
a hard drive contains two surfaces. Regardless of the disk drive type, the magnetic layer
of particles on each surface is magnetized into concentric circles of storage areas

4-2

called TRACKs. Each track is then divided into subareas called SECTORs. Each sector is
uniquely identified by a pattern of information preceding each sector called an ID FIELD.
The division of a surface into sectors may be envisioned as a pie cut up into equal sized
pieces. The process of generating each of the tracks and sectors is termed the formatting
process. The physical length of a sector will be greater on the outer tracks of the
surface than the inner tracks of the surface (similar to the grooves of a phonograph
record). Although the number of sectors per track may vary from one media type to
another, the number of sectors in each track of the same media must always be a constant.

The DOS assigns numbers to every sector, every track, and every surface. Surfaces are
numbered consecutively by one starting from zero. Tracks are numbered consecutively by
one starting from zero at the outermost portion of the disk giving the innermost track
the highest number. A CYLINDER consists of the like-numbered tracks on all surfaces. For
example, on a two-surface media, track zero of surface zero and track zero of surface one
are grouped together into cylinder zero.

Floppy disk drives use a read/write head that is positioned lateral to the disk surface.
The head can step in towards the center of the disk and step out to the circumference of
the disk while the disk rotates on its hub. The rotational speed is 300 rpm for 5-1/4"
floppy disk drives and 360 rpm for 8" floppy disk drives. Hard disk drives rotate at
speeds of 3600 rpm and higher. Because the physical lengths of the sector vary from the
outer to the inner track, the bit density of each sector varies per track. Therefore, the
amount of information stored in all sectors is dependent on the maximum bit density
permitted in its shortest sized sector. Some manufacturers of computer systems are using
a design which keeps the bit density per sector constant by use of a variable speed drive
which maintains a constant linear velocity of the surface across the head regardless of
the track position. This technique promotes a greater capacity for storage but requires a
more precisely controlled drive. If such a drive control were utilized under this DOS, a
suitable translation filter would be needed which would permit the DOS to think that each
track still contained the same number of sectors.

If we concern ourselves with a 5-1/4" double density floppy drive rotating at 300 rpm, we
can calculate that a disk makes one complete rotation every 200 ms (60/300). Since there
are 18 sectors per track, a sector's ID FIELD passes by the drive's head every 11.1 ms.
In a system where the transfer of data to and from the disk is under the control of the
CPU rather than through auxiliary Direct Memory Access (DMA) hardware, the CPU spends its
time handshaking with the controller while transferring each byte of data. If we are
trying to access a series of sectors sequentially (as would be the case with a
sequentially accessed file), there will rarely be sufficient time for the CPU to
establish the handshaking with the controller for the access of the next sector once it
has finished transferring the current sector. Thus, if we number the sectors
consecutively, most likely the ID FIELD of the sector we next want to read has just
passed by the head and we must wait a complete revolution of the disk before getting to
the ID FIELD again. In fact, the worst case would require us to wait just under 211.1 ms
per sector while the time to read an entire track would be 3.8 seconds!

A practical solution to increasing the data transfer is to stagger the sector numbers so
that the next sector to transfer is arriving at the head just after we start looking for
it. If we could read many sectors per single rotation, we could speed up the transfer of
data. This can be done when the disk is formatted. It can also be done when the disk is
accessed by means of a lookup table that translates a logical sector number to a
staggered physical sector number. The process of staggering the sector numbers is termed
INTERLEAVE. An interleave of two means that sequential sector numbers are in every second
physical sector. An interleave of three uses every third position. For a single density
5-1/4 diskette, this pattern would be 0-5-1-6-2-7-3-8-4-9. An 18 sector per track
diskette with an interleave of three would have a pattern of 0-6-12-1-7-13-2-8-14-3-9-15-
4-10-16-5-11-17. The interleave can be precisely calculated with knowledge of the total
time it takes to execute the machine instructions between sector I/O. This is generally a
most difficult task; therefore, interleave patterns are generally derived empirically.

4-3

Sometimes, the apparent difference in access speed across different systems stems from a
poor selection of the sector interleave. The Version 6 DOS uses the method of applying
the interleave during the formatting process. The sectors in each track are therefore
numbered in a staggered order. [Most CP/M systems format sequential sector numbers and
use a sector interleave translation table to translate sequential access requests to the
staggered number when the access is made].

One other attempt at increasing the sequential access of sectors is to examine the time
between transferring the last sector number of a track and sector zero of the next higher
track [for the moment let's not compound the situation of two sided diskettes where the
sectors on the second side rotate in an order reverse of the obverse side]. The time lag
will include the sector interleave plus the track-to-track step time. Thus it might make
sense to not start each track with sector number zero, but to optimize the starting
number so that the position of sector zero will have its ID FIELD just coming up to the
head by the time that the drive has stepped and is ready to scan for the ID FIELD. This
staggering is termed TRACK SKEW. The DOS introduces such a skew during the formatting
process; however, such a skew is probably optimum for only one track-to-track stepping
rate. With all of this, we still can state that each track contains like numbered sectors
- regardless of track number or surface. Therefore, each sector on a disk is designated
unique by its respective sector, surface, and track numbers.

When the operating system formats a diskette (or hard disk), all of the parameters
associated with the diskette are predetermined. Thus the number of sectors per track,
number of sectors per granule and thus the granules per track, number of sides (or
surfaces), and number of cylinders are all designated as well as the density of the media
in the case of floppy diskettes. Some of these figures (density, sides, granules per
track) are written to fields in the Granule Allocation Table which is part of the
directory (see chapter 5). Others (sectors per track, sectors per granule, in addition to
the former quantities) are part of the DCT fields. When the system attempts to open a
file on a disk, it uses the @CKDRV SuperVisor Call function to ascertain the availability
of the disk and then logs the disk once it finds it available. The function of "logging"
will update the DIRCYL field (providing the driver returns proper system sector error
codes), then update the DBLBIT field and the MAXCYL field based on information stored in
the GAT. It is up to the driver to sense the density of the floppy media [the "data
record not found" controller error is the usual indication that the driver must toggle to
the alternate density. If a data record ID FIELD is not readable under both single
density and double density, then the assumption is that the corresponding sector is not
on the disk and the error is passed back to the system]. The toggling function of the
driver includes the updating of the CONFIGURATION FIELD in the DCT appropriate to the
density being selected.

The SVC disk primitives are funneled through a common system routine that establishes a
linkage protocol between the operating system and the disk device driver(s). When an I/O
request is invoked by a higher level SVC, such as a request to READ a file record, the
request is translated to that disk primitive needed to satisfy the function. The linkage
protocol is uniform across all disk devices that are connected to the system. This makes
the access of files transparent to size or nature of the disk device within the scope of
the DCT parameters acceptable to the system.

4.2 DRIVE CONTROL TABLE (DCT)
The Drive Control Table (DCT) is the way in which the DOS interfaces the operating system
with specific disk driver routines. This table is one of the examples of the versatility
of the system as it embodies within it the method of customizing the parameters of a
drive so that each disk drive may incorporate a unique set of parameters. For instance,
one drive may be a 35-track single headed drive. Another may be an 80-track dual headed.
While a third may yet be a 5 megabyte hard drive. Ingenuity and oddball hardware will mix
well to provide an easy interface.

4-4

The DCT contains the information relating to the granule size. In the case of floppies,
granule sizes are standardized by the system according to the disk size and density.
Chapter 5 contains more information on granule allocation sizes. Data on the number of
sectors per track, number of heads, number of partitions, and maximum number of cylinders
is also contained in the DCT for each drive. This data is an essential ingredient in the
allocation and accessibility of file records and therefore must be accurately introduced.
The table contains a maximum of eight DCT records - one record for each logical drive
designated 0-7. Each DCT record is fielded as follows:

4.2.1 DCT VECTOR - <Bytes 0-2>
This three-byte field specifies whether the logical drive position is enabled or
disabled. The system will not attempt to communicate with a logical drive number whose
DCT position is considered disabled. If the position is enabled, then the field will also
contain the address vector of the disk driver module that communicates with the
controller interfacing the disk drive. The first byte of the DCT VECTOR would contain an
X'C3' value if the drive position is enabled (an X'C3' represents an absolute jump [JP
nnnn] instruction in Z-80 machine code). If the drive is disabled, this byte will be an
X'C9' value (an X'C9' represents an absolute return [RET] from subroutine instruction in
Z-80 machine code).

The second and third bytes of the field will contain the vector transfer address of the
disk driver module that communicates with the controller. The operating system typically
places the disk drivers in the low memory driver region. A "stock" system has available
in this region, memory sufficient to store additional drivers that are not supplied by
the system. The DOS will dynamically use this low memory region based on requests to
invoke system drivers and filters (such as the COM/DVR or FORMS/FLT). A retrievable
pointer to the first available memory address in this region can be used to locate the
origin of a user-supplied driver or filter (if sufficient space is available). This will
be discussed in a later section.

4.2.2 DCT FLAG-1 - <Byte 3>
This field contains a series of sub-field parameters associated with the disk drive
specifications. The field is encoded as follows:

Bit 7 Set to 1 will indicate the disk device is "software" write protected. It is
the responsibility of the disk driver to check this bit on any disk
primitive that references a WRITE operation (i.e. write sector, write system
sector, format track, or format device) and return a "Write protected disk"
error code (error 15) if set.

Bit 6 If set to a "1", it indicates that the floppy diskette currently being
accessed is formatted in double density. If set to a "0" it indicates that
the diskette is single density. The disk driver is responsible for
maintaining this bit by recognizing the density of the disk it is accessing.
The bit is used both by the driver in the drive selection process and by the
system in informative messages by such things as DEVICE displays, DIRectory
displays, and FREE displays. This bit is not referenced by the system if the
DCT is associated with a hard drive (see bit 3 of this field).

Bit 5 If this bit is set to a "1", the drive associated with the DCT position is
an 8" drive. This bit will be a "0" if the drive associated with the DCT
position is a 5-1/4" drive. This bit is initially set by whatever installs
the disk driver (see the FLOPPY/DCT utility). In the installation of a hard
disk driver, this bit should be set according to the size of the hard drive
- 5" or 8". In the case of floppy drives, the system formatter will use this
bit to adjust its formatting data to 5" or 8". It is also used to adjust
informative messages as mentioned under bit-6.

4-5

Bit 4 This bit is used to store the side selection number for a current access of
a diskette. It is a storage area usable by the disk driver to place the side
number calculated from the relative sector passed in the disk primitive
request. The system passes a relative sector number based upon the number of
sectors per cylinder. On a two-headed floppy disk drive, by dividing the
relative sector number by the number of sectors per track, the result will
be indicative of the side selection number, 0 or 1. The routine performing
the calculation can then place the result in this bit of the DCT for the use
of the drive selection routine. The bit value will match the side indicator
bit in the sector header as written by the FDC. Hard disk drivers will use
storage space internal to the driver to hold such a result.

Bit 3 If this bit is set to a "1", it indicates that the DCT position is
associated with a hard drive (Winchester). A "0" in this bit position
indicates a floppy disk drive is associated with the DCT position. The bit
is used by the system in informative messages by such things as DEVICE
displays, DIRectory displays, and FREE displays. In addition, the system's
@CKDRV routine uses this bit to inhibit its automatic logging of a hard
drive while it restricts its checking to write protect status only.

Bit 2 This bit is set by the system to indicate the minumum time delay required
after selecting a floppy disk drive whose motors are not currently running.
It must be used by floppy disk drivers to adjust their time delay between
selection of the floppy drive and the first poll of the status register. A
"1" value indicates the minimum delay to be 0.5 seconds while a "0" value
indicates the delay to be 1.0 seconds. The time delay can be introduced via
a request of the @PAUSE SuperVisor Call with an appropriate count.

Bits 1-0 This subfield is used for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, the
field contains the step rate specification code (0-3) for the floppy disk
controller. With a Western Digital 179X FDC or equivalent, the codes
correspond to a step rate of 6, 12, 20, and 30ms at an FDC clock speed of 1
MHz and 3, 6, 10, and 15ms at an FDC clock speed of 2 MHz. For hard disk
drives, this field is usually associated with the drive select code of the
hard disk drive (binary value 0-3).

4.2.3 DCT FLAG-2 <Byte 4>
This byte contains additional drive specifications and parameters. The field is encoded
as follows:

Bit 7 Effective with 6.2, this bit is used to inhibit @CKDRV. If set to a "1", no
@CKDRV will be performed by @OPEN when accessing that drive.

Bit 6 This bit is used as a flag to the formatter. If set to a "1", it indicates
that the controller is capable of double density operation. In this case,
the formatter defaults to double density formatting unless the user
overrides the default. If set to a "0", the formatter will default to single
density formatting. For controllers capable of double density operation,
this bit is usually set.

Bit 5 This bit is used for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, a
"1" indicates that the diskette currently mounted in the drive is a two
sided diskette while a "0" indicates that the diskette is a single-sided
diskette. This bit is updated whenever the disk is logged by the system or
whenever a program invokes the @CKDRV SuperVisor Call. Note that if a dual
sided diskette is placed into a two-headed disk drive that previously

4-6

accessed a single-sided diskette, the system will not recognize the second
side of the new diskette until the logging process. When the DCT is
associated with a hard disk drive, this bit may be used to indicate that a
logical cylinder represents two physical cylinders thereby providing support
for twice as many cylinders as limited by the Granule Allocation Table (the
GAT limits the number of logical cylinders to 203 - thus by using this bit,
hard drives to 406 cylinders can be supported as a single logical drive). In
the case of hard drives, this bit is termed the "DBLBIT" bit.

Bit 4 This bit is used to indicate the controller associated with the DCT position
is an "alien" controller. The term, "alien", refers to a controller that
does not return index pulses in its status register. The system uses index
pulse transitions in a finite time period (usually 0.5 seconds) to detect
the presence of a rotating diskette. If a disk drive does not contain a
diskette, or does but the drive door is open, the status obtained on
continuous selection of the drive will not indicate the presence of any
index pulse transitions. By examining the state of the index pulse over a
period of time corresponding to 2.5 possible rotations of a disk, the lack
of an OFF-ON-OFF transition state will indicate that the drive is not
available. If a controller does not return the state of an index pulse in
the controller status byte, then the system will never be able to detect the
availability of the drive if it maintains the state transition examination
in the logging process. This bit should be set when such controllers are
used to inhibit the @CKDRV routine from performing such an examination and
proceed to the configuration logging.

Bits 3-0 This subfield is used for different purposes depending on whether the drive
associated with the DCT is a floppy drive or a hard drive. For floppies, the
field contains the physical drive address (1, 2, 4, or 8) corresponding to
the drive select line (DS0, DS1, DS2, or DS3). Thus, only one of the four
bits will ever be set. Hard drive installations that partition a drive by
head, may use this field to indicate the relative starting head number of
the logical drive partition. This provides support for a drive of up to 16
heads although 4 heads is typical.

4.2.4 CURCYL - <Byte 5>
This field is used for different purposes depending on whether the drive associated with
the DCT is a floppy drive or a hard drive. For floppies, the field is used by the disk
driver to store the current cylinder position of the disk drive assigned to the DCT
position. Since a Floppy Disk controller is used to access up to four different drives,
when it accesses a drive, its track register must be loaded with correct information as
to the current track position of the head. The current cylinder position is maintained by
the disk driver in this storage field. The driver can then be use this field to reload
the FDC track register prior to a seek operation and update the field to the cylinder
requested in the seek. Hard disk controllers generally contain their own internal track
register that is not accessible to a software driver. This means that hard disk drivers
do not need to maintain the current cylinder position in this field. The field is thus
available for the storage of other data items as required by the hard disk driver. Other
data items may include the total quantity of heads on the physical drive (as needed by
XEBEC controllers), the complex drive select code (as used by Lobo Drives UniVersal
Controller), or data associated with drive partitioning by cylinder rather than by head.

4.2.5 MAXCYL - <Byte 6>
This field contains the highest numbered logical cylinder on the drive referenced from a
starting cylinder numbered "0". Thus, a 35-cylinder drive would be entered as X'22', a
40-cylinder drive as X'27', and an 80-cylinder drive as X'4F'. A typical 153-cylinder ST-
506 compatible winchester drive would have an entry of X'98'. If a hard drive has more
than 203 cylinders but less than 407 cylinders and is to be maintained as a single drive
(or one partitioned by heads), then the system must access it as if each two physical

4-7

cylinders were a single cylinder with twice as much capacity (although the system will
still limit the logical cylinder to not exceed 256 sectors). In that case, the MAXCYL
entry will be half of the actual quantity and bit-5 of the FLAG-2 field will be set. For
example, an SA-1000 drive (8" winchester) has 256 cylinders, four surfaces, and 32
sectors per track. If this drive is treated as a single volume (no partitioning), the
MAXCYL entry is X'7F' indicating the highest numbered cylinder is 127 (128 cylinders).
The DBLBIT bit is set indicating a logical cylinder is composed of two physical
cylinders.

4.2.6 CONFIGURATION FIELD - <Bytes 7-8>
This two-byte field contains information concerning the physical space parameters of the
disk drive and how space is allocated per cylinder. Its entries are encoded as follows:

4.2.6.1 Byte 7

Bits 7-5 This subfield contains the number of heads (surfaces) assigned to the
logical partition of a hard disk drive. In the case of floppy disk drives,
this entry should be a B'000'. For example, a four-head hard drive with a
two-head partition would have a B'001' in this subfield. The entry is zero
relative, thus a one-head partition is B'000', a two-head partition would be
B'001', and an eight-head partition would be B'111'.

Bits 4-0 This subfield contains the highest numbered sector on a track numbered
relative from zero. A ten-sector-per-track drive would show an X'09' entry.
A 32-sector-per-track hard drive would show an X'1F'.

4.2.6.2 Byte 8

Bits 7-5 This subfield contains the quantity of granules per track allocated to the
disk drive according to the number of sectors per granule. Since the field
is 3-bits in length, the entry is offset from zero. Thus, one granule per
track is entered as B'000', two as B'001', etc. In the case of floppy disk
drives, this figure is standardized for 5-1/4" and 8" media as identified in
chapter 5. If the DCT is associated with a hard drive, then the figure
entered here refers to the number of granules in a physical cylinder
according to the number of surfaces. If the DBLBIT bit is set, this entry
then represents half of the granules on a logical cylinder. The total
granules per logical cylinder is computed by the doubling the value
contained in this field if bit-5 of DCT FLAG-2 is set. Let's illustrate this
again using the SA-1000 drive. If we configure the drive as a single volume
with 16 sectors per granule, a physical track has two granules per track.
Since the drive has four surfaces, a physical cylinder has eight granules.
However, since the DBLBIT bit must be set to indicate double the 128
cylinders shown in the MAXCYL field, the system would have to double the
granules per cylinder computing 16 GPC. This is clearly in violation of the
system's upper limit of eight granules per cylinder maximum. Therefore, our
example SA-1000 drive would be configured with 32 sectors per granule, one
granule per track, four granules per physical cylinder. The DBLBIT bit would
provide eight logical granules per logical cylinder. Therefore, this
subfield would have an entry to indicate four granules.

Bits 4-0 This field contains the quantity of sectors per granule that is used in the
configuration of the disk. In the case of floppy disk drives, this figure is
standardized for 5-1/4" and 8" media as identified in chapter 5. Hard disk
drive granule sizes are assigned by the implementor of the hard disk drive
system.

4.2.7 DIRCYL - <Byte 9>
This field contains the cylinder where the directory is located. For any directory
access, the system will use the contents of this field as a pointer to the cylinder

4-8

containing the disk's directory. The system attempts to maintain the integrity of this
field by using the status returned when the driver reads a system sector in contrast to a
non-system sector (chapter 5 discusses the use of data address mark conventions in disk
sectors). If the system expects to be reading a directory sector but does not get the
error code 6 ("Attempted to read system data sector"), it will read the BOOT sector and
obtain the directory cylinder storage byte located therein for a second attempt to read
the directory sector. After an unsuccessful second attempt (including whatever retries
are performed per attempt by the driver), the system posts a read or write error
depending on the original request. This error will eventually be classified as a GAT , HIT
or DIRECTORY error if the attempt was an I/O request for the GAT, HIT or a directory
entry sector respectively. Realizing that most hard disk controllers do NOT support a
data address mark convention, the hard disk driver must simulate the READ SYSTEM SECTOR
error code when an @RDSEC or @VRSEC request is made to the directory cylinder. Since the
only indication of where the directory is located is contained in this field, it is
paramount to the functioning of the hard disk environment that this field be correctly
maintained. The system's LOG command will always reload this field with the BOOT sector's
directory cylinder pointer. Thus, it may be necessary to highlight the function of LOG in
any written information pertinent to the hard disk system user.

__
	VECTOR	FLAG	FLAG	CUR	MAX	H M S	G S	DIR	
C3/C9	ADDRESS	1	2	CYL	CYL	D A E	P P	CYL	
_____	______	______	______	______	______	______	S__X_C	_T__G_	______

Figure 4-1: Drive Control Table Record

4-9

4.3 DISK CONTROLLER COMMUNICATIONS
The function of DISK CONTROLLER COMMUNICATIONS is to communicate operating system com-
mands to a disk driver so that the driver can translate these commands into commands
acceptable to the disk controller. Before we look at the command functions provided by
the system, let's take a look at the commands available in a typical floppy disk
controller - the Western Digital 179X series. Figure 4-2 summarizes these commands. If
you are interested in the detailed specifications of such a controller, you should obtain
the "FD 179X-02 Floppy Disk Formatter/Controller Family" manual published by the Western
Digital Corporation.

Command Purpose
RESTORE Recalibrate drive to cylinder 0 position
SEEK Reposition head to a specified cylinder
STEP Move the head one cylinder position
STEP IN Move the head one cylinder to the higher track
STEP OUT Move the head one cylinder to the lower track
READ SECTOR Transfer the specified sector from disk to CPU
WRITE SECTOR Transfer the specified sector from CPU to disk
READ ADDRESS Transfer data from the next ID FIELD encountered
READ TRACK Transfer an entire track of data from disk to CPU
WRITE TRACK Transfer an entire track of data from CPU to disk
FORCE INTERRUPT Abort the pending controller operation

Figure 4-2: Floppy Disk Controller Commands

Since the DOS also supports hard disk drives, let's look at the commands available in
some typical hard disk controllers. The following three figures will summarize the
commands supported by the Lobo Drives UniVersal (UVC), the Western Digital WD-1000, and
the XEBEC S-1410 controllers.

Command Purpose
NO OPERATION Test if controller available
READ SECTOR Transfer the specified sector from disk to CPU
READ DISK Read entire disk without data transfer
WRITE SECTOR Transfer the specified sector from CPU to disk
FORMAT DISK Format entire disk
READ UNTIL FLAW Read disk until encountering an error

Figure 4-3: Lobo-UVC Controller Commands

If we compare the typical Hard Disk Controller [let's abbreviate this term to "HDC"]
commands to the commands available in the typical Floppy Disk Controller [we will also
abbreviate this term to "FDC"], we find that the HDC generally has very few commands for
communication between the CPU [most hard disk systems refer to the CPU as the "HOST"] and
the controller. The S-1410 HDC has a preponderance of commands; however, close
examination reveals many commands for testing and diagnostics. Each HDC mentioned
performs its own automatic SEEK operation; therefore, it is generally not even necessary
for the HDC driver to utilize that command. The HDC driver will most typically involve
READ, WRITE, and FORMAT operations.

4-10

Command Purpose
RESTORE Recalibrate drive to track 0
SEEK Position the read/write head to a cylinder
READ SECTOR Transfer the specified sector from disk to CPU
WRITE SECTOR Transfer the specified sector from CPU to disk
FORMAT TRACK Initialize the ID and DATA fields of the track

Figure 4-4: WD-1000 Controller Commands

Command Purpose
TEST DRIVE READY Test if drive is ready
RECALIBRATE Recalibrate drive to track 0
REQUEST SENSE STATUS Return the 4-byte drive/controller status
FORMAT DRIVE Format entire disk
CHECK TRACK FORMAT Check track for correct ID and interleave
FORMAT TRACK Initialize the ID and DATA fields of the track
READ Read the specified sector(s) from disk to CPU
WRITE Write the specified sector(s) from CPU to disk
SEEK Position the read/write head to a cylinder
INITIALIZE DRIVE
CHARACTERISTICS

Configure controller for drive

READ ECC BURST ERROR
LENGTH

Read the byte containing ECC data

RAM DIAGNOSTIC Test the controller's RAM buffer
DRIVE DIAGNOSTIC Test the drive-to-controller interface
CONTROLLER INTERNAL
DIAGNOSTICS

Perform controller self-test

READ LONG Read a sector and four ECC bytes
WRITE LONG Write a sector and four ECC bytes

Figure 4-5: S-1410 Controller Commands

The process of drive selection is unique from HDC to HDC as well as the adapter that
electronically interfaces the HDC to the host. FDC drivers are typically more involved
with the additional commands for stepping and seeking while performing a little more
bookkeeping operations. There is also a great more involvement in the format operation
for the FDC driver over the HDC driver.

The DOS provides 16 SuperVisor Calls that are used to pass operating system function
requests to a disk controller - be it an FDC or an HDC. Figure 4-6 reviews these
functions that are detailed in chapter 7. If we try to correlate the SVC functions with
the FDC commands, we observe that the DOS provides no facility for requesting a STEP,
STEP OUT, nor a FORCE INTERRUPT. This is not an oversight. The force interrupt is a
function that is not needed from a higher level such as the DOS, but would most likely be
usable directly within the FDC driver. Also, since the FDC does its own track stepping
via the SEEK request, the STEP command from the DOS is only needed during the format
operation. The DOS limits this to STEP IN since the disk only needs to be stepped in one
direction during the format operation. The remaining SVCs supply the higher level
functions to communicate all of the DOS requests to the controller.

4-11

 NAME NUMBER FUNCTION DESCRIPTION
@DCSTAT 40 0* Test disk controller status
@SLCT 41 1* Select a disk drive
@DCINIT 42 2 Initialize a disk controller
@DCRES 43 3 Reset a disk controller
@RSTOR 44 4* Restore a drive to cylinder 0
@STEPI 45 5* Issue track step-in to controller
@SEEK 46 6* Seek to a disk cylinder
@RSLCT 47 7* Reselect a busy drive until available
@RDHDR 48 8 Read ID field
@RDSEC 49 9* Read a disk sector
@VRSEC 50 10* Verify the readability of a disk sector
@RDTRK 51 11 Read a disk track
@HDFMT 52 12* Format an entire drive
@WRSEC 53 13* Write a disk sector
@WRSSC 54 14* Write a disk directory sector
@WRTRK 55 15* Write a disk track (format data)

Figure 4-6: Disk Controller Communications
Note: Functions asterisked are supported by the DOS floppy driver

Before taking a look at the HDC commands versus the disk controller communications
functions, let's address exactly what functions are used in the DOS. The DOS spends a
great percentage of the controller's time in reading and writing. These DOS functions use
@RDSEC to read disk sectors, @WRSEC and @WRSSC to write non-system and system sectors
respectively. Where the application is requesting verification (or where the DOS is
writing a system sector), then the @VRSEC function is used which should read the
designated sector without disturbing the disk file I/O buffer. Next, the logging function
uses @SEEK and @RSLCT to obtain status from the disk. FORMAT uses @WRTRK for the FDC and
@HDFMT for the HDC as well as @SLCT, @RSTOR, and @STEPIN in addition to the previous
SVCs. BACKUP and FORMAT also use @DCSTAT to make sure that the drive is enabled. These
functions are indicated by an asterisk in figure 4-6. The four remaining functions,
@DCINIT, @DCRES, @RDHDR, and @RDTRK are provided in case utility software needs these
requests for communications with custom drivers [NOTE THAT THE FDC DRIVER SUPPLIED WITH
THE DOS DOES NOT SUPPORT THESE FUNCTIONS].

If we look at the HDC commands, we observe that although the DOS commands provided can
not uniquely request all of the commands of every controller, the DOS commands do provide
the means to satisfy all of the necessary functions. In fact, some DOS functions are not
even needed in the case of the HDC and hard disk system.

When the operating system passes the SVC request to the disk driver The manner in which
the driver controller linkage is established is by passing a function value contained in
register "B" to the software driver that interfaces to the controller. Sixteen functions
have been defined within the DOS. The table in figure 4-6 briefly describes these
functions.

At this point, it would be beneficial to discuss exactly what operations are performed by
the operating system when it receives one of the Disk Controller Communications SVC
requests. All of the requests use register C to reference the logical drive number. The
DOS uses this value to index the Drive Control Table and obtain a pointer to the DCT
record associated with the logical drive. After saving the index register, the DOS places
the pointer into IY.

The DOS saves register pair BC and places the function code corresponding to the function
as shown in figure 4-6 into register B. The DOS will also issue an @BANK request to bring
in bank zero. This operation will ensure that bank zero is resident for a disk I/O
operation. It also limits the location of disk drivers or disk filters [like MONITOR

4-12

available from Logical Systems, Inc.] to reside in either the low memory driver region or
in upper memory of bank zero. Upon return from the disk driver, the DOS will restore the
previously resident RAM with another @BANK request.

The DOS then places an "Illegal drive number" error code (32) into the accumulator,
resets the Z-flag, then executes a "CALL" to a "JP (IY)" instruction. The purpose of this
strange linkage becomes evident when we examine the result. The first byte of the DCT is
interpreted as an RET instruction if the drive is disabled. Since register IY is pointing
to that byte, the linkage will return back to the caller with the "Illegal drive number"
error. If the drive is enabled, the first DCT byte is interpreted as a JUMP instruction
which will transfer control to the entry point of the driver. We can now show the uniform
register protocol upon entry to a disk driver. This protocol is illustrated in figure 4-
7.

Register Direction Condition/Value
AF => Irrelevant upon entry to the driver
B => Contains the function code of the request <0-15>
C => Contains the logical drive number <0-7>
D => Contains the cylinder being requested <0-202>
E => Contains the relative sector being requested <0-255>
HL => Contains a pointer to the I/O buffer, where applicable
IY => Contains a pointer to the proper Drive Control Table entry
A <= Must be loaded with one of the error dictionary codes
BC <= Can be altered by the disk driver
DE <= Must be preserved by the disk driver
HL <= Must be preserved by the disk driver
IY <= Should be preserved by the disk driver
F <= The Z-flag should be set if A=0, otherwise reset the Z-flag

Figure 4-7: Disk Driver Register Protocol

The remainder of this section introduces a skeletal disk driver. It will contain only the
functions that are associated with protocol required by the DOS. There is no expectation
that you will learn how to write a disk driver from this publication; you will learn how
to put the functions into your driver that are required by the DOS!

4.4 Skeletal Disk Driver
 ENTRY JR BEGIN ;The driver starts with the
 DW DVREND ; DOS standard header
 DB MODPTR-ENTRY-5 ;Length of 'MODNAME'
 DB 'MODNAME' ;Name for @GTMOD requests
 MODPTR DW 0 ;These pointers are unused
 DW 0
 BEGIN LD A,B ;The first test will return
 OR A ; to the caller on @DCSTAT
 RET Z ; and set the Z-flag with A=0
 CP 7 ;
 JP Z,RSLCT ;Transfer on @RSLCT
 JP NC,DISKIO ;Transfer on physical I/O request
 ;*=*=*
 ; FUNCTIONS 1-6 NEED TO BE PARSED
 ;*=*=*
 SLCT . ;As required
 ;*=*=*
 RSTOR . ;As required
 LD (IY+5),0 ;Needed if a floppy
 ;*=*=*
 STEPI . ;As required if a floppy
 INC (IY+5) ;Bump CURCYL

4-13

 ;*=*=*
 SEEK . ;As required
 LD (IY+5),D ;Update CURCYL
 ;*=*=*
 ; The RSLCT function should return with the hardware
 ; write protection status. Set bit 6 of the accumulator
 ; to indicate the drive is write-protected
 ;*=*=*
 RSLCT . ;As required
 ;*=*=*
 DISKIO BIT 2,B ;Test if read or write commands
 JR NZ,WRCMD ;Transfer if functions <12-15>
 ;*=*=*
 ; Functions 8-11 need to be parsed
 ;*=*=*
 RDHDR . ;If you want to support it
 ;*=*=*
 RDSEC . ;Read a sector of data
 VRSEC . ;Don't alter the buffer
 ;*=*=*
 ; On RDSEC and VRSEC, if the read referenced the
 ; directory cylinder and was successful,
 ; then you need to return an error code 6. A floppy
 ; disk controller will provide the indicated status.
 ; Hard disk users may have to compare the requested
 ; cylinder to DIRCYL in the DCT.
 ;*=*=*
 RDHDR . ;If you want to support it
 ;*=*=*
 WRCMD BIT 7,(IY+3) ;Check for software write protect
 JR Z,WRCMD1 ;Transfer if no soft WP
 LD A,15 ;Set "Write protected disk" error
 RET
 WRCMD1 . ;Now parse functions 12-15
 ;*=*=*
 HDFMT . ;May be used for hard drives
 ;*=*=*
 WRSEC . ;Write with X'FB' data address mark
 ;*=*=*
 WRSSC . ;Write with X'F8' data address mark
 ;*=*=*
 WRTRK . ;May be for floppy or hard drives
 ;*=*=*
 ; NOTE: Hard disk drivers may want to exclude the FORMAT
 ; function from the driver if a separate formatter is
 ; supplied. This guards against program crashes inadvertantly
 ; entering the driver with a register setup depicting FORMAT
 ;*=*=*
 ; Error codes returned to the system under abnormal
 ; conditions must be in the error dictionary. Hard disk
 ; drivers should attempt to translate the controller error
 ; code to the most reasonable DOS equivalent.
 ;*=*=*
 DVREND EQU $-1

4.5 HARD DISK ALLOCATION SCHEMES
The integrator of a hard disk usually has to consider some form of hard disk partition-
ing. Why is this to be considered? A hard disk has a minimum of 5 megabytes of storage
space. The demand for storage never abates; thus, 10 megabyte, 20 megabyte, and higher
capacities are being integrated into the microcomputer environment. The version 6 DOS has
limitations on the total size of a storage device that is addressable as a single volume.
These are limitations stemming from the size of the directory. A device is limited to a
maximum of 256 sectors per logical cylinder, and 203 logical cylinders. Given a standard
sector size of 256 bytes, the DOS can address 13.3 megabytes total. If the target drive

4-14

exceeds this capacity, then it must be divided into more than one drive in order to
address its total capacity.

The DOS also limits the number of files per logical drive to 256 (of which two are taken
up by the BOOT/SYS and DIR/SYS files). Although data base applications may find the most
practical arrangement is a single volume, the typical use of even a 5 megabyte drive will
find the file slots filled before all of the space is allocated - thus space is wasted
[It is possible and highly practical for the hard disk integrator to consider combining
individual static files into members of a partitioned data set to free up multiple file
slots. PRO-PaDS is a utility program capable of creating and maintaining such files].
Therefore, even with the smaller 5 megabyte drive, there exists a rationale for
partitioning.

Once the decision is made to divide a drive, the question arises as to how to go about
such a division. There are three methods of partitioning. One is to divide the drive by
cylinder. For example, Take a 306 cylinder, four head, 10 megabyte drive. This can be
divided into two drives with the first logical drive using cylinders 0-152 while the
second uses cylinders 153-306. The DOS actually uses logical cylinder numbers 0-152 for
both partitions and the hard disk driver must recognize that it needs to translate the 0-
152 for the second partition into the range 153-306. Obviously, one can divide up the
drive into partitions smaller than 5 megabytes. A second method is to divide the drive so
that all of the cylinders are included in a single logical volume, but volumes use
different heads. Thus, the previously mentioned drive could be divided into two, three,
or four logical drives. A third method would be to translate the drive's physical
parameters into quantities acceptable to the system while staying within the maximum
number of 256 sectors per logical cylinder.

There are advantages and disadvantages to each method. First, our discussion of floppy
configurations pointed out a use for addressing as much capacity in a single cylinder
prior to having to step the drive. This means that we would lean towards divisions by
cylinder. However, if we are alternately selecting different partitions, the drive must
be stepped a great distance to get to each partition. Another problem is that a head
crash would essentially wipe out all drives since a single head is used on all
partitions. Of course, if the drive physically has more than 406 cylinders, it must be
partitioned by cylinders (or translation) to address the higher cylinders.

Partitioning by head provides less sectors per physical cylinder; however, since hard
drives today usually use very fast buffered seek, the stepping time to advance a track is
minimal. A head crash will also only wipe out a single logical drive.

Translation methods can be useful with drives whose parameters do not lend themselves to
the DOS limits (a 39 sector per track drive, for instance). A drawback to translation
methods is the difficulty in keeping logical cylinders referencing a physical cylinder.

The important point in any method, is that the driver must be written to do the
conversions as the operating system's reference is to logical cylinder and sector within
that cylinder when it issues an I/O request. The driver may make use of the CURCYL byte
and FLAG-2, bits 3-0 for storage of partition specific data. The driver can also
establish its own table when these DCT fields do not provide sufficient space to store
the quantities needed by the driver.

Let's take a look at a few examples. The number of file slots identified assumes that all
logical drives are considered to be data drives. Subtract 14 from the number for each
SYSTEM drive. In the first, case we will use an ST-506 type drive which has four heads
and 153 cylinders. This will be the division of a 5 megabyte drive partitioned by head.
Figure 4-8 illustrates the DCT parameters to divide the drive into two logical drives of
2.5 megabytes each. Notice that we are using 8-sector granules (2K). Since we can have at

4-15

most, eight granules per cylinder, the minimum granule size is 2K. We could have
allocated sixteen sectors per granule providing four granules per cylinder.

START
HEAD

MAX
CYL

OF
HEADS

MAX
SEC

GPT SPG DIR
CYL

FILE
SLOTS

0 152 2 32 8 8 76 254
2 152 2 32 8 8 76 254

Figure 4-8: 5 Meg divided; 2-2.5

We could just as well divide this drive into a 1.25 megabyte volume and a 3.75 megabyte
volume. This arrangement is illustrated in figure 4-9. This arrangement forces us to
allocate granules in 16-sector blocks.

START
HEAD

MAX
CYL

OF
HEADS

MAX
SEC

GPT SPG DIR
CYL

FILE
SLOTS

0 152 1 32 4 4 76 238
1 152 3 32 6 16 76 254

Figure 4-9: 5 Meg divided; 1.25-3.75

If we divide up the drive into three logical volumes, we will develop two volumes of 1.25
megabytes each and one volume of 2.5 megabytes. This arrangement will also provide more
file slots.

START
HEAD

MAX
CYL

OF
HEADS

MAX
SEC

GPT SPG DIR
CYL

FILE
SLOTS

0 152 1 32 4 4 76 238
1 152 1 32 4 4 76 238
2 152 2 32 4 8 76 254

Figure 4-10: 5 Meg divided; 2-1.25, 1-2.5

The last division of a 5 megabyte 4-head drive to illustrate is as four separate drives
of 1.25 megabytes each. This partitioning provides the greatest number of file slots.
Where the environment will have a great deal of small files, it is probably best to use
this arrangement.

START
HEAD

MAX
CYL

OF
HEADS

MAX
SEC

GPT SPG DIR
CYL

FILE
SLOTS

0 152 1 32 4 8 76 238
1 152 1 32 4 8 76 238
2 152 1 32 4 8 76 238
3 152 1 32 4 8 76 238

Figure 4-11: 5 Meg divided; 4-1.25

DBLBIT START
HEAD

MAX
CYL

OF
HEADS

MAX
SEC

GPT SPG DIR
CYL

FILE
SLOTS

1 0 152 2 32 4 16 76 254

1 0 152 1 32 4 8 76 254
1 1 152 1 32 4 8 76 254

Figure 4-12: 5 Meg divided; 2-2.5

Five megabyte drives exist that use 2 heads (a single platter) and incorporate 306
cylinders. If we want to divide up this type of drive by head, we can have at most, two
partitions. Since this drive requires the DBLBIT, it will be illustrated in figure 4-12
as both a single and a dual volume. An important observation is that a logical cylinder

4-16

is two physical cylinders. Although the drive has 306 cylinders, the cylinder figures in
the DCT reflect the logical quantities of half as many. Also, the granules per track
figures are representative of a PHYSICAL cylinder. These figures will be doubled by the
system in the calculation of granules per cylinder since the DBLBIT is set.

From these figures illustrating the configurations of 5 megabyte drives, it should be
relatively easy to develop the necessary Drive Control Table data for drives of 10, 15,
20, and higher megabyte capacity.

4.6 Placement of Disk Drivers
Disk drivers are usually placed into memory by an initialization program which executes
from the SYSTEM (DRIVE=n,DRIVER="filespec") library command. This DOS facility will load
and execute your driver initializer identified by the "filespec". A file extension of
"/DCT" is the default. Upon passing control to this DCT driver, register pair DE will be
pointing to the DCT record associated with the DRIVE=n entry. If the DRIVE parameter was
omitted from the SYSTEM command, register pair DE will contain a zero. The function of
the initializer is to prepare the driver and DCT tables according to any parameters
required for setup of the driver. The initializer then identifies where in memory the
driver is to be placed, relocates any absolute address references, then places it into
memory. The last function is to insert the entry address into the Drive Control Table.

One other point concerns a test that should be made by the driver initializer that is to
be invoked by the SYSTEM command. The operating system permits the execution of any load
module. A driver program is a load module. To guard against its execution from DOS Ready
by inadvertently entering its full file specification, the system provides the programmer
with an indicator that execution is under control of the SYSTEM command. When SYSTEM
passes control to a driver program, it will set bit-3 of the CFLAG$ (the system request
bit). Thus, by testing this bit upon entry to the program, an error exit can be taken if
the system request bit is not set. An error message such as the following can be logged
and the program aborted.

Must install via SYSTEM (DRIVE=n,DRIVER="filespec")

The DOS provides a limited device driver region in low memory. This is where the
keyboard, video, printer, and floppy disk drivers are located. User specified device
drivers (such as the COM driver) are placed in this region if sufficient space is
available. Otherwise, they are relocated to the high memory region and protected. The
MemDISK driver must reside in the low memory device driver region. A hard disk driver
supplied by LSI is usually placed in low memory. The low memory driver region is filled
from the bottom up in contrast to the high memory region which is filled from the top
down. The maximum address usable is X'12FF'. The system has a pointer which maintains the
first available memory address in this region. This driver I/O region pointer is always
positioned as the two bytes just prior to the *KI Device Control Block. Let's take a look
at some partial routines to obtain and use this driver pointer.

 ;*=*=*
 ; Obtain low memory driver pointer
 ;*=*=*
 LD DE,'IK' ;Locate pointer to *KI DCB
 LD A,@GTDCB ; via @GTDCB SVC
 RST 40
 JP NZ,IOERR ;No error unless KI clobbered!
 DEC HL ;Decrement to driver pointer
 LD D,(HL) ;P/u hi-order of pointer,
 DEC HL ; decrement to and p/u
 LD E,(HL) ; lo-order of pointer
 LD (LCPTR+1),HL ;Save ptr for later
 ;*=*=*
 ; Make sure driver will fit into (POINTER)-X'12FF'

4-17

 ;*=*=*
 LD HL,DVREND-DVRBGN ;Calculate driver length
 ADD HL,DE ;Start address + driver length
 LD (SVEND+1),HL ;Temp save of new pointer
 LD BC,1300H ;Maximum address + 1
 XOR A ;Reset carry flag
 SBC HL,BC ;No room if START+LENGTH >= 1300H
 JP NC,NOROOM ; fit in low core
 .
 .
 .
 ;*=*=*
 ; Move driver into low memory after relocating
 ; any absolute adddress references
 ;*=*=*
 LCPTR LD HL,$-$;P/u saved driver pointer
 LD E,(HL) ;Get the lo-order,
 INC HL ; bump to hi-order,
 LD D,(HL) ; & get it for start of move
 PUSH DE ;Save start address for ENTRY
 PUSH HL ;Save driver memory pointer
 LD HL,DVRBGN ;Point to start of driver
 LD BC,DVREND-DVRBGN;Calc driver length
 LDIR ; & move into driver region
 POP HL ;Now pick up the saved
 LD (HL),D ; pointer again and reset
 DEC HL ; it to point to the
 LD (HL),E ; NEW first available address
 POP DE ;Recover for ENTRY stuff into DCT

If insufficient room exists in the low memory driver region (perhaps it is already filled
with COM/DVR, MemDISK/DCT, FORMS/FLT, or some additional driver/filter), then your
initialization program should obtain the high memory pointer (HIGH$) via the @HIGH$
SuperVisor Call and relocate the driver to high memory. Remember the HIGH$ pointer points
to the first available high memory address but the memory is filled towards lower
addresses. The sample filter listed in Chapter 8, the Appendix, illustrates a high memory
relocation.

5-1

5. The DOS Directory Structure
5.1 GENERAL DIRECTORY CONVENTIONS
The disk operating system uses a one-level directory structure to logically associate a
file specification (including the access of any record in that file) to the physical
storage space on a disk occupied by the file. This DOS directory occupies an entire
cylinder on the disk drive (or logical disk drive if a hard disk is partitioned into
multiple logical drives). The directory itself is considered a file with the specifi-
cation "DIR/SYS".

The directory is composed of three primary parts: A Granule Allocation Table (GAT)
contains information pertinent to the allocation of physical disk space. The GAT also
contains data that may be considered the disk pack identification. The second part of the
directory is a Hash Index Table (HIT) which is used by the DOS to speed access to
individual directory records associated with each file stored on the disk. The last part
of the directory contains the access information pertinent to each disk file. This
information is termed the FILE DIRECTORY ENTRY records.

Before delving into the detailed descriptions of each part, one important item must be
discussed concerning the directory. The soft-sectored floppy disk format was first
designed by IBM for the 3740. This format defined an identification field for each
physical sector on the disk. Preceding the sector is a byte termed the "Data Address
Mark”. IBM defined two distinct data address marks: An X'FB' was assigned for a sector
that contained actual data. An X'F8' was assigned to a "deleted" sector (i.e. one whose
data is deleted and the sector is available for use). The convention of use for these
data address marks in this operating system is to assign the X'FB' to indicate any
"ordinary" sector on the disk - an "ordinary" sector is any sector that is not part of
the directory. The X'F8' data address mark is used for all sectors constituting the
directory cylinder.

Disk controllers used to access the disk will generally return an indication in a status
register of the data address mark detected when reading any given sector. The DOS
capitalizes on this scheme by using the returned status as an indicator of what type of
sector was read - a directory sector or non-directory sector. When a read-sector (@RDSEC)
service request is satisfied by a disk driver, it is the responsibility of the driver to
return this status to the caller. If a "normal" sector is successfully read, the driver
returns a no-error indication. If a directory sector is successfully read, the driver
returns an error code 6 - "Attempted to read system data record".

The first sector (cylinder 0, sector 0) of each disk contains a pointer to the cylinder
containing the directory. This pointer is the third byte of the sector. There is also a
field in the Drive Control Table which contains a copy of that pointer. When the system
requests a read of a directory sector and is returned status which indicates that a
regular sector was read instead of a directory sector, it assumes that the disk has been
changed since it last accessed the directory and the new disk has its directory on a
different cylinder. The system then updates the Drive Control Table (DCT) field by
reading the first sector and retrieving its directory cylinder pointer. This condition is
used by the system to constantly keep current information on the disk each time the
directory cylinder is accessed [the @OPEN and @INIT SuperVisor Calls also act to keep the
system current on the disk structure by logging the disk identification via the @CKDRV
SuperVisor Call and updating its DCT fields accordingly].

Because of the Data Address Mark conventions employed in the DOS, two SuperVisor Calls
have been provided to read/write directory sectors. The @RDSSC (SVC-85) will read a
directory sector and update, where necessary, the Drive Control Table directory cylinder
field. The @WRSSC (SVC-54) can be used to write a sector to the directory and properly

5-2

identify the correct Data Address Mark. Directory sector writes should be verified with
the @VRSEC SuperVisor Call. Expect to obtain an error code 6 as previously noted.

5.2 THE GRANULE ALLOCATION TABLE (GAT)
The Granule Allocation Table (GAT) contains a section of information pertinent to the
allocation of physical storage space on the disk. For floppy disk drives, this section is
composed of two tables: The ALLOCATION table specifies what areas of the disk are
allocated or unavailable for use while the LOCKOUT table specifies what areas of the disk
are physically unusable. For winchester drives (hard drives), the LOCKOUT table is not
used and the ALLOCATION table is extended to include the GAT space normally used by the
floppy lockout table. The GAT is wholly contained in the first sector of the directory
cylinder. Additional fields are stored within the GAT sector that describe the disk (its
pack identification). The GAT also contains certain data specific to the formatting
configuration of the disk.

An entire disk is divided into cylinders (tracks) and sectors. The standard sector size
is 256 bytes in length. Each cylinder has a specified constant quantity of sectors.
Because the DOS uses a single 8-bit register to communicate sector numbers, it will
support a maximum of 256 sectors per cylinder. A group of sectors is allocated whenever
additional space is needed. This group is termed a GRANULE and is always a constant size
for any given disk. This does not mean that the granule is the same size for all disks.
The size of a granule generally increases with the increasing size of the disk storage
device. The choice of a granule size is a compromise over minimum file lengths and
overhead during the dynamic allocation process. It is somewhat dependent on the number of
sectors per cylinder because the number of sectors per granule must divide evenly into
the number of sectors per cylinder.

The ALLOCATION and LOCKOUT tables are actually bit maps that associate one granule of
space per bit. One byte is used to store the information on a single cylinder; therefore,
the GAT is configured to provide for a maximum of eight granules per cylinder. In these
tables, each bit that is set indicates a corresponding granule in use (or locked out). A
reset bit indicates a granule free to be used. In the GAT allocation and lockout bytes,
bit 0 corresponds to the first relative granule on a cylinder (denoted as granule 0). Bit
1 corresponds to the second relative granule (denoted as granule 1), bit 2 the third
(denoted as granule 2), and so on through bit 7 for the eighth granule (denoted as
granule 7). This is illustrated in figure 5-1.

===
| __ |
	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		...
	cylinder 0		cylinder 1		cylinder 2		...																					
	1 1 1 1 1 0 0 1		1 1 1 1 1 0 0 0		1 1 1 1 1 0 0 0		...																					
	_______________		_______________		_______________		___																					
===

Figure 5-1: Allocation Table Representation

A 5-1/4" single density diskette is formatted at ten sectors per track, five sectors per
granule, two granules per track. A two-sided diskette has twice the number of granules
per track available on each cylinder. Thus, the single density single, sided 5-1/4"
configuration will use only bits 0 and 1 of each GAT byte. The remaining GAT byte will
contain all 1's - thereby denoting unavailable granules. A 5-1/4" double density diskette
is formatted at 18 sectors per track, six sectors per granule, three granules per track.
Thus, this configuration will use bits 0, 1, and 2 of each GAT byte. The standard granule
allocation conventions used by the DOS for floppy diskettes are as shown in figure 5-2.

5-3

==
| |
| SECTORS PER SECTORS PER GRANULES PER MAXIMUM |
| TRACK GRANULE TRACK CYLINDERS |
| ----------- ----------- ------------ --------- |
| 5" SDEN 10 5 2 96 |
| 5" DDEN 18 6 3 96 |
| 8" SDEN 16 8 2 77 |
| 8" DDEN 30 10 3 77 |
| |
==

Figure 5-2: Allocation for Single-Sided Floppy Media

Figure 5-2 assumes single sided media. The DOS supports two-sided operation within the
confines of the hardware interfacing the physical drives to the CPU. A two-headed floppy
drive functions as a single volume with the second side treated as an extension of the
first in a true cylinder structure. A bit in the Drive Control Table (DCT) indicates one-
sided or two-sided drive configuration.

A winchester-type hard disk also has a similar configuration. However, since many
different sizes of winchesters are available, the recommended configurations for
representative hard drives are covered in chapter 6 - DISK FILE ACCESS AND CONTROL. For
the purposes of this chapter, it is sufficient to mention that hard drives may use the
first 203 GAT bytes to reference ALLOCATION information (positions X'00' through X'CA').
Hard drives that exceed 203 physical cylinders require remapping or partitioning. Methods
of achieving remapping and partitioning are also discussed in chapter 6.

The following describes the structure of the Granule Allocation Table and the information
contained in it. The numbers in angle brackets indicate the relative positions of the
field within the GAT. Figure 5-3 illustrates the entire GAT.

5.2.1 ALLOCATION TABLE - <Bytes X'00' - X'5F'>
This table contains a bit image of what space is available for use (and conversely what
space is not available). GAT+0 corresponds to cylinder 0, GAT+1 corresponds to cylinder
1, GAT+2 corresponds to cylinder 2, and so forth. As previously noted, bit 0 of each byte
corresponds to the first granule on the cylinder, bit 1 corresponds to the second
granule, etc. A "1" indicates the granule is not available for use. The amount of GAT
space assigned to this table permits a maximum of 96 cylinders; however, the formatter
restricts the format of 8" media to 77 cylinders.

5.2.2 LOCKOUT TABLE - <Bytes X'60' - X'BF'>
This table contains a bit image of what space has been locked out from use. Granules may
be locked out because they either do not physically exist (i.e. granules 3-7 on 5-1/4"
double density floppy media) or the verify process of the floppy formatter had detected a
bad sector in a granule. The table corresponds on a cylinder for cylinder basis as does
the allocation table. It is used specifically during mirror-image backup functions to
determine if the disk has the available capacity to effect a backup of the source
diskette.

5.2.3 EXTENDED ALLOCATION TABLE - <Bytes X'C0' - X'CA'>
This table is used in hard drive configurations by extending the ALLOCATION table from
X'00' through X'CA' and omitting a distinct lockout table. The table then provides a
capacity of up to 203 cylinders. The hard drive DBLBIT bit is available in the Drive
Control Table to permit combining two physical cylinders into a single logical cylinder
provided the limit of 256 sectors per cylinder is not exceeded. This arrangement
therefore provides support for up to 406 cylinders. Lockout information, where available,
is generally denoted by setting the appropriate bit assigned in the ALLOCATION table.

5-4

Hard drives generally cannot be backed up in a mirror-image manner and the BACKUP utility
will prohibit it by automatically entering the RECONSTRUCT mode.

5.2.4 DOS VERSION - <Byte X'CB'>
This field contains the operating system version used in formatting the disk. Disks
formatted under DOS 6.0 will have a value of X'60' contained in this byte. It is used to
determine whether or not the disk contains all of the parameters needed for DOS 6.0
operation.

5.2.5 CYLINDER EXCESS - <Byte X'CC'>
This byte contains the number of logical cylinders in excess of 35. It is used to
minimize the time required to compute the maximum cylinder formatted on the diskette and
to update the Drive Control Table. It is designed to be excess 35 so as to provide
complete compatibility with previous systems that restricted the floppies to 35 tracks
and did not maintain the byte. This field is read to update the Drive Control Table
during the process of logging the disk by the @CKDRV SuperVisor Call process.

5.2.6 DISK CONFIGURATION - <Byte X'CD'>
This byte contains data specific to the formatting of the diskette. It is fielded as
follows:

Bit 7 Set to "1" indicates the disk is a DATA disk; thus all but two directory
slots are available for data files. Set to a 0 indicates that the disk is a
SYSTEM disk which reserves 14 additional directory slots for system files
providing a maximum of 240 directory entries for data files.

Bit 6 Set to "1" implies double density formatting. Set to 0 implies single
density formatting.

Bit 5 Set to "1" indicates two-sided floppy media. Set to 0 indicates single-sided
floppy media.

Bit 4 This is reserved for internal system use.

Bit 3 This is reserved for internal system use.

Bits 2-0 Contain one less than the number of granules per track that were used in the
formatting process.

5.2.7 DISK PACK PASSWORD - <Bytes X'CE' - X'CF'>
This field contains the 16-bit hash code of the disk master password. Its storage is in
standard low-order high-order format. The password itself must be composed of the
characters <A-Z, 0-9> with the first character alphabetic. The 16-bit hash code can be
obtained from the DOS for any given password. This is done by placing the password string
into an 8-character buffer left-justified and padded with spaces, and then invoking a
system overlay.

The following code illustrates this operation.

 HASHMPW LD DE,PSWDPTR ;Point to the 8-char buffer
 LD A,0E4H ;Specify password hash function
 RST 40 ;Issue the RST instruction

The 16-bit password hash code will be returned in register pair HL. Registers AF, B, DE,
and HL are altered. The operating system will not return to the address following the RST
40 instruction when the SVC function code is an internal system request code (i.e. has
bit-7 set) but will return to the previous caller. Thus, it is necessary to CALL this
routine.

5-5

5.2.8 PACK NAME - <Bytes X'D0' - X'D7'>
This field contains the diskette pack name. This is the same name displayed at boot up if
the diskette is a system diskette used for the boot operation [specifically, the boot
name is obtained from the System Information Sector but is managed coincidentally by
FORMAT and ATTRIB. It is also the name displayed during a FREE or DIR or obtained by the
@DODIR SuperVisor Call. The name is assigned during the formatting operation or re-
assigned during an ATTRIB renaming operation.

5.2.9 PACK DATE - <Bytes X'D8' - X'DF'>
This field contains the date that the disk was formatted or the date that it was used as
the destination in a mirror-image backup operation. If the diskette is used during a
BOOT, this date will be displayed adjacent to the pack name [actually, the boot date is
obtained from the System Information Sector but is managed coincidentally by BACKUP].

5.2.10 RESERVED FIELD - <Bytes X'E0' - X'F4'>
This field is reserved for future use under DOS version 6. It formerly contained the AUTO
command buffer under earlier versions of the DOS; however, since Version 6 supports 79-
character command lines, the System Information Sector now holds the AUTO command buffer
for use during a BOOT operation.

5.2.11 MEDIA DATA BLOCK - <Bytes X'F4' - X'FF'>
Effective with LDOS 6.2.0, this field contains a header sub-field and a sub-field
replicating the last seven bytes of the drive control table in use and associated with
the media when the media was formatted.

Bytes 0-3 contains an X'03' followed by the string, "LSI".

Bytes 4-10 replicates the last seven bytes of the DCT during format.

==
| 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F |
| ___ |
00		00				
01		01				
02	ALLOCATION TABLE	02				
03		03				
04		04				
05	___	05				
06		06				
07		07				
08	FLOPPY LOCKOUT TABLE	08				
09	HARD DRIVE ALLOCATION TABLE	09				
0A		0A				
0B	___	0B				
0C	_E_X_T_E_N_D_E_D___A_L_L_O_C____	_#	_+	_*	_MPW_	0C
0D	___P_A_C_K___N_A_M_E___	___P_A_C_K___D_A_T_E___	0D			
0E	R E S E R V E D	0E				
0F	___	0F				
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F						
Note:"#"= DOS Version;"+"= Cyl Excess;"*"= Configuration						
==

Figure 5-3: Granule Allocation Table Illustrated

5-6

5.3 THE HASH INDEX TABLE (HIT)
The Hash Index Table is the key to addressing any file in the directory . It is designed
so as to pinpoint the location of a file's primary directory entry with a minimum of disk
accesses. A minimum quantity of disk accesses is useful to keep system overhead low while
at the same time providing for rapid file access.

===
| ___ |
	10	9	8	7	6	5	4	3	2	1	0	
	F	I	L	E	N	A	M	E	E	X	T	
	E X A M P L E D A T											

===

Figure 5-4: File NAME/EXT buffer

When an application requests the system to open a file, the system must locate that
File's Primary Directory Entry (FPDE) record which contains the disk storage data needed
to address the file. The procedure that the system uses to locate a file's FPDE is to
first take the file name and extension and construct an 11-byte field with the file name
left justified and padded with blanks so as to fill out eight positions. The file
extension is then inserted, padded with blanks, and will occupy the three least
significant bytes of the 11-byte field. The resulting string is illustrated in figure 5-
4. This field is then processed through a hashing algorithm which produces a single byte
value in the range X'01' through X'FF' (a hash value of X'00' is reserved to indicate a
spare HIT position). The following code may be used to obtain the one-byte hash code for
an 11-character NAME/EXT buffer.

 HASHSPEC LD HL,SPECPTR ;Point to the 8-char buffer
 LD A,0D4H ;Specify filename hash function
 RST 40 ;Issue the RST instruction

The one-byte hash code is returned in the accumulator. Registers AF, B and HL are
altered. The operating system will not return to the address following the RST 40
instruction when the SVC function code is an internal system request code (i.e. has bit-7
set) but will return to the previous caller. Thus, it is necessary to CALL this routine.

Each file's hash code is stored in the Hash Index Table (HIT) at a position which is
associated with the FPDE record containing the file's access information. After the OPEN
routine obtains the hash code for the file identified in the file specification, it
searches the HIT for a matching hash code. Since more than one 11-byte string can hash to
identical codes, the opportunity for a "collision" exists (a collision is where two or
more file names result in the same hash code). For this reason, the search algorithm will
sequentially scan the HIT for a matching code entry and when found, will then read the
FPDE record corresponding to the matching HIT position. OPEN will then compare the file
name/ext stored in the FPDE record with that provided in the file specification. If both
match, the file's FPDE directory record has been found. If the two fields do not match,
the HIT entry was a collision and the algorithm continues its search from where it left
off. If a match to the hash code is not found in the HIT, the file does not exist on that
disk drive. If the user passed a drive specification (drivespec) as part of the file
specification, a "File not found" error will be returned. If no drivespec was passed, the
system will search all drives in logical number order starting with drive 0. If the @INIT
SuperVisor Call was used to open the file, the system will first use @OPEN to determine
the possible existence of the file. If @OPEN advises that the file has not been found,
then @INIT will create the file by obtaining a spare HIT position then constructing the
corresponding FPDE.

5-7

The position of a file's hash code entry in the Hash Index Table is called the Directory
Entry Code (DEC) for the file. All files will have at least one DEC. A contiguous block
of granules allocated to a file is termed an EXTENT. The FPDE record contains fields to
hold the data on four extents. Files that use more than four extents because they are
either large (an extent can address a maximum of 32 contiguous granules) or fractured
into non-contiguous space require extra directory records to hold the additional extents.
These additional records are termed the File's Extended Directory Entries (FXDE) which
also have four extent fields each. A Directory Entry Code is also used to associate an
FXDE with a HIT entry. Thus, a file will have DECs for each FXDE record and use up more
than one filename slot in the HIT. Therefore, to maximize the quantity of file slots
available, you should keep your files below five extents wherever possible.

The FPDE and FXDE records are contained in the remaining sectors of the directory
cylinder. The Directory Entry Codes are mapped to the FPDE/FXDE records by each DEC's
position in the Hash Index Table. Conceptualize the HIT as eight rows of 32-byte fields
as shown in figure 5-5. Each row will be mapped to one of the directory entry records in
a directory sector. The first HIT row to the first directory entry record, the second HIT
row to the second directory entry record, and so forth. Each column of the HIT field (the
0-31) is mapped to a directory entry sector. The first column is mapped to the first
directory entry sector in the directory cylinder (not including the GAT and HIT).
Therefore, the first column corresponds to sector number 2, the second column to sector
number 3, and so forth. The maximum quantity of HIT columns actually used will be
governed by the disk formatting according to the formula: N = (number of sectors per
track times the number of sides) minus two.

In the 5-1/4" double density single-sided configuration, there exist eighteen sectors per
cylinder - of which two are reserved for the GAT and HIT. Since only sixteen directory
entry sectors are possible, only the first sixteen positions of each HIT field are used.
Other formats will use more or less columns of the HIT, depending on the quantity of
sectors per cylinder in the formatting scheme.

This arrangement works nicely when dealt with in assembly language for interfacing.
Consider the DEC value of X'84'. If this value is loaded into the accumulator, a simple:

AND 1FH ;Strip off row and
ADD A,2 ; calculate sector

will extract the sector number of the directory cylinder containing the file's directory
entry. If that same value of X'84' was operated on by:

AND 0E0H ;Strip off sector and keep row

the resultant value will be the low-order starting byte of the directory entry record
assuming that the directory sector was read into a buffer starting at a page boundary.
This procedure makes for easy access to the directory record. The system provides two
routines, @DIRRD and @DIRWR, that will read/write the correct directory entry sector
corresponding to a DEC. The directory I/O uses the system buffer and a pointer in the HL
register pair is automatically positioned to the proper FPDE (the buffer is on a page
boundary for physical I/O). @DIRWR performs verification after write!

The following figure may help to visualize the correlation of the Hash Index Table to the
directory entry records. Each byte value shown represents the position in the HIT and is,
in fact, the Directory Entry Code value. The actual contents of each byte will be either
an X'00' indicating a spare DEC, or the one-byte hash code of the file occupying the
corresponding directory entry record.

5-8

==
| ---------------- C O L U M N S ---------------- |
| Row 1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F |
| 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F |
| |
| Row 2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F |
| 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F |
| |
| Row 3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F |
| 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F |
| |
| Row 4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F |
| 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F |
| |
| Row 5 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F |
| 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F |
| |
| Row 6 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF |
| B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF |
| |
| Row 7 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF |
| D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF |
| |
| Row 8 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF |
| F0 F1 F2 FF F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF |
| ---------------- C O L U M N S ---------------- |
| |
| Note: Valid DECs for 5-1/4 1-sided DDEN in BOLDFACE |
==

Figure 5-5: Directory Entry Codes

The eight directory entry records for the directory entry sector numbered 2 would
correspond to DEC assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. The
positions shown in figure 5-6 are reserved for system overlays on a system disk (as
determined from the configuration field defined in the section on the Granule Allocation
Table). These entry positions, of course, correspond to the first two rows of each
directory entry sector for the first eight directory entry sectors. Since the operating
system accesses these overlays by the DEC position in the HIT rather than by file name,
these positions are always reserved for system disks. Data disks reserve only positions
00 (BOOT/SYS) and 01 (DIR/SYS).

==
| |
| 00 -> BOOT/SYS 04 -> SYS2/SYS 20 -> SYS6/SYS 24 -> SYS10/SYS |
| 01 -> DIR/SYS 05 -> SYS3/SYS 21 -> SYS7/SYS 25 -> SYS11/SYS |
| 02 -> SYS0/SYS 06 -> SYS4/SYS 22 -> SYS8/SYS 26 -> SYS12/SYS |
| 03 -> SYS1/SYS 07 -> SYS5/SYS 23 -> SYS9/SYS 27 -> SYS13/SYS |
| |
==

Figure 5-6: Directory Entry Codes reserved for SYSTEM files

The Hash Index Table limits the design of the system to a maximum support of 256 files on
any one logical drive. With the current state of the art in hard disk drive technology,
that limit may prove too small a number. Obviously, additional file slots are available
by partitioning a hard drive into two or more logical drives with each partition
containing its own directory. The customized hard disk driver then translates the logical
cylinder/sector information to physical parameters. This concept is discussed in detail
in chapter 4.

5-9

5.4 THE DIRECTORY RECORD STRUCTURE
The disk directory contains the information sufficient to access all files on the disk.
We have already shown that disk space allocation is defined in the Granule Allocation
Table. We have also revealed in the previous section how the operating system uses file
hash codes stored in the Hash Index Table to locate the Directory Entry Code for each
file. Each DEC refers to a specific directory entry record. A directory record is 32-
bytes in length. Thus, each directory entry sector contains eight directory entry
records.

The HIT was shown to contain a maximum of 256 Directory Entry Codes. Since there are
eight entries per sector, the maximum number of directory entry sectors is 32 (256
divided by 8). If we add one sector for the GAT and one for the HIT, we discover that the
maximum length of the entire directory can be 34 sectors. The directory must be contained
completely on a single cylinder. Therefore, the exact length of the directory and hence
the number of directory entries is highly dependent on the size of a cylinder. For
example, an 18-sector per cylinder formatted disk will have 16 directory entries and
hence 16 times 8 or 128 directory entries. Consult the section on the HIT for the formula
calculating the number of directory sectors.

===
| |
| SECTORS PER DIRECTORY FILES AVAILABLE PER DIRECTORY |
| CYLINDER RECORDS TOTAL SYSTEM DISK DATA DISK |
| ----------- ---------- ------- --------- ---------- |
| 5" SDEN-1 10 8 64 48 62 |
| 5" SDEN-2 20 18 144 128 142 |
| 5" DDEN-1 18 16 128 112 126 |
| 5" DDEN-2 36 32 256 240 254 |
| 8" SDEN-1 16 14 112 96 110 |
| 8" SDEN-2 32 30 240 224 238 |
| 8" DDEN-1 30 28 224 208 222 |
| 8" DDEN-2 60 32 256 240 254 |
| - |
| 5" HARD-<1> 128 32 256 240 254 |
| |
| 5" HARD-<2> 64*2 32*2=64 256*2=512 240*1+ 254*2=508 |
| 254*1=494 |
| 5" HARD-<4> 32*4 30*4=120 240*4=960 224*1+ 238*4=952 |
| 238*3=938 |
| |
| Note: Hard drive values show total entries for all partitions. |
| "<x>" denotes the number of logical drives. |
===

Figure 5-7: Directory entries for various media

The first two directory entries of the first eight directory entry sectors are reserved
for system overlays on a SYSTEM disk. A DATA disk reserves only the first directory entry
of the first two directory entry sectors. The total capacity of files is equal to the
number of directory sectors times eight (since 256/32 = 8). The quantity available for
use will always be reduced by 16 on a SYSTEM disk or by two on a DATA disk to account for
those entries reserved for the operating system. Figure 5-7 shows the record capacity
(file capacity) of each floppy format type. The dash suffix on the density indicator
represents the number of sides formatted. The figure also lists representative values for
5 megabyte winchester drives (typical ST-506 compatible: 4 heads, 32 sectors per track,
153 tracks per head).

5-10

Because of the Data Address Mark conventions employed in the operating system, two
SuperVisor Calls have been provided to read/write directory entry sectors. The @DIRRD
(SVC-87) will read a directory entry sector into the system buffer when passed a drive
and DEC. Register pair HL is automatically positioned to the proper directory entry in
the buffer corresponding to the DEC (the buffer is on a page boundary for physical I/O).
This buffer can be written back to the directory using the @DIRWR (SVC-88), again by
specifying only the drive and DEC.

Any sector of the directory may be requested for I/O by using either @RDSSC (SVC-85) for
reading (which will update the Drive Control Table directory cylinder field where
required) or @WRSSC (SVC-54) can be used to write a sector to the directory and properly
identify the correct Data Address Mark. Directory sector writes should be verified with
the @VRSEC SuperVisor Call. Expect to obtain an error code 6 as previously noted. This
procedure makes for easy access to the GAT and HIT directory records. Abbreviated
contents of the directory may also be retrieved via the @DODIR and @RAMDIR Supervisor
Calls.

Finally, since the directory is conceptualized as a data file and contains its own
directory entry, DIR/SYS, the directory can be treated as a file and OPENed - just like
any other file. READ access is granted for this method. Under no circumstances should you
attempt to write to the directory by defeating the password protection when the directory
is opened as a file and accessed as such. Failure to heed this warning may make the
directory unreadable.

The expert programmer may find useful information in the directory - especially for those
that write catalog programs. Since the directory information is so vital to the
friendliness of programs, the system displays a great deal of information on each file
via the directory command. The following provides detailed information on the contents of
each directory entry field. The numbers contained in angle brackets refer to the relative
byte(s) of the field in the record.

5.4.1 ATTRIBUTES - <Byte 0>
This byte contains the entire attributes of the designated file. It is encoded as
follows:

Bit 7 This bit flag is used to indicate whether the directory entry is the file's
primary directory entry (FPDE) or one of its extended directory entries
(FXDE). Since a directory entry can contain information on up to four
extents, a file that is fractured into more than four extents requires
additional directory records. If this bit is a "0", the entry is an FPDE. If
set to a "1", the entry is an FXDE.

Bit 6 A SYStem file is noted by setting this bit to a "1". If set to a "0", the
file is declared a non-system file. It is used as a reference in DOS
utilities and as a double check when the DOS overlay loader accesses a file
in the reserved HIT entries.

Bit 5 This bit is used to designate the corresponding file as a Partitioned Data
Set. The PDS is a library file managed by a utility program called PRO-PaDS .
The utility is available from MISOSYS.

Bit 4 This activity bit is used to indicate whether the directory record is in use
or not. If set to "1", the record is in use. If set to a "0", the directory
record is not active although it may appear to contain directory
information. A previously active file is removed only by resetting this bit,
removing its HIT entry, and deallocating its space. Thus, the FPDE is left
intact except for this bit.

5-11

Bit 3 Specifies the visibility; if "1", the file is INVisible to a DIRectory
display or other library function where visibility is a parameter. If a "0",
then the file is declared VISible.

Bits 0-2 Contain the access protection level of the file. The 3-bit binary value is
encoded as follows:
 0 - FULL 1 - REMOVE 2 - RENAME 3 - WRITE

4 - UPDATE 5 - READ 6 - EXEC 7 - NO ACCESS

5.4.2 FLAG FIELD - <Byte 1>
This field contains four file flags in bits 7-4. The low-order nibble is associated with
the DATE field. The flags are encoded as follows:

Bit 7 When this bit is set, the system will be kept from deallocating any unused
space at the end of the file when the file is closed. This bit will be set
to a "1" if the file was "CREATEd" by the DOS library command, CREATE. Such
a file will never shrink in size. The file will remain as large as its
largest allocation.

Bit 6 This flag is termed the "MOD flag". If this flag is set to a "1", it
indicates that the file has not been backed up since its last modification.
The BACKUP utility is the only DOS facility that will reset this flag. It is
set during the file close operation if the File Control Block (FCB +0, Bit 2)
indicated a modification of file data.

Bit 5 This bit is set by the system when a file is opened with UPDATE or greater
access. It is used to detect the presence of an open file for subsequent
OPENs of the same file. The bit is reset by the CLOSE operation.

Bit 4 This bit is used internally by the system.

If the ATTRIBUTE field identifies the record as an FXDE, then this entire byte (flags and
month) will contain the Directory Entry Code of the directory entry forward linked to
this one. This entry is the backward link.

5.4.3 MODIFICATION DATE - <Bytes 1 - 2>
This field is composed of 12 bits, the low-order nibble of DIR+1 and the entire byte of
DIR+2. It contains the month, day, and year for the day that the file was last modified.
The field is encoded as follows.

Bits 11-8 Contain the binary month of the last modification date. If this field
is a zero, the system date was not set when the file was established
nor since if it was updated.

Bits 7-3 Contain the binary day of last modification.

Bits 2-0 Contain the binary YEAR - 1980. That is to say that 1980 would be
coded as 000, 1981 as 001, 1982 as 010, etc.

5.4.4 EOF OFFSET - <Byte 3>
This field contains the end-of-file offset byte. It points to the position in the ending
sector of where the next byte can be placed. If EOF OFFSET is a zero, it means that a
full sector of 256 bytes had been written to the last sector of the file and the next
byte must be written to a new sector. This byte, and the ending record number (ERN), form
a triad pointer to the byte position immediately following the last byte written.

5-12

5.4.5 LOGICAL RECORD LENGTH - <Byte 4>
This field contains the Logical Record Length (LRL) specified when the file was initially
generated (via @INIT) or subsequently changed by being overwritten with some file that
has another LRL via "COPY (CLONE)" or "BACKUP". A value of "0" indicates that the LRL is
equal to 256.

5.4.6 FILE NAME - <Bytes 5 - 12>
This field contains the name portion of the file specification. The file name will be
left justified and padded with trailing blanks. The name will always be in upper case
characters <A-Z, 0-9>. If a file has FXDE records in addition to the FPDE, only the FPDE
will contain the filename in this field.

5.4.7 FILE EXTENSION - <Bytes 13 - 15>
This field contains the extension portion of the file specification. As in the name
field, it is left justified and padded with trailing blanks. If a file has FXDE records
in addition to the FPDE, only the FPDE will contain the file extension in this field.

5.4.8 OWNER PASSWORD - <Bytes 16 - 17>
This field contains the hash code of the OWNER password. The OWNER password is used to
gain full access to a password protected file. Passwords are assigned at file creation
and/or changed with the ATTRIB library command. The 16-bit hash code for a file password
can be obtained using the method shown for obtaining the disk master password hash code.

5.4.9 USER PASSWORD - <Bytes 18 - 19>
This field contains the hash code of the USER password. THE USER password is required to
access the file at the level of protection identified in the attribute field. Passwords
are assigned at file creation and/or changed with the ATTRIB library command. The 16-bit
hash code for a file password can be obtained using the method shown for obtaining the
disk master password hash code.

5.4.10 ENDING RECORD NUMBER - <Bytes 20 - 21>
This field contains the ending record number (ERN) which is based on full sectors. If the
ERN is zero, it indicates a file where no writing has taken place (or a lot of writing
whereby you forgot to close the file). If the LRL is not 256, the ERN value represents
the sector where the EOF occurs. Each time a sector is written to the disk, the ERN is
advanced by one - even if the sector is not a full sector. Thus, if ERN shows 3, and EOF
OFFSET shows 0, then three full sectors have been written (relative 0, 1, and 2). If ERN
shows 3 and EOF OFFSET shows 62, then two full sectors and one partial sector of 62 bytes
have been written.

5.4.11 EXTENT DATA FIELDS - <Bytes 22 - 29>
The extent data fields contain data on the allocation of disk space for the file. Each
field is composed of 16-bits and can contain the allocation information for a maximum of
32 contiguous granules. Their contents tell you what cylinder stores the first granule of
the extent, what is the relative number of that granule, and how many contiguous granules
are in use in the extent. Each extent is encoded according to the pattern illustrated for
extent field 1.

5.4.11.1 Extent Field 1 - <Bytes 22-23>

Bits 15-8 Contain the cylinder number for the starting granule of that extent. The
extent uses space on the disk starting from this cylinder and the sector
based on the starting granule, for as many granules as are noted in bits 4-
0.

Bits 7-5 Contain the relative granule number (0-7) in the cylinder which is the first
granule of the file for that extent. This value is numbered starting from
zero. (i.e. a "0" indicates that the first granule in use is the first
granule on the cylinder. This would be sector 0. A "1" would indicate that

5-13

the first granule in use is the second granule on the cylinder. If there are
6 sectors per granule, sector 6 would start the extent. A "2" would indicate
that the first granule in use is the third on the cylinder. If there are 6
sectors per granule, then the first sector in use would be sector 12.)

Bits 4-0 Contain the quantity of contiguous granules in the extent. The value is
relative to 0. Therefore a "0" value implies one granule, "1" implies two,
and so forth. Since the field is 5 bits, it contains a maximum of X'1F' or
31, which would represent 32 contiguous granules.

5.4.11.2 Extent Field 2 - <Bytes 24-25>

Structured the same as 1.

5.4.11.3 Extent Field 3 - <Bytes 26-27>

Structured the same as 1.

5.4.11.4 Extent Field 4 - <Bytes 28-29>

Structured the same as 1.

5.4.12 FXDE LINK FLAG - <Byte 30>
This field is a flag noting whether or not a link exists to an extended directory record.
If no further directory records are linked, the byte will contain X'FF'. If the value is
X'FE', a link is recorded to an extended directory entry.

5.4.13 FXDE LINK POINTER - <Byte 31>
This is the forward link to the extended directory noted by the FXDE LINK FLAG. The link
pointer is the Directory Entry Code (DEC) of the extended directory record. The FXDE will
then contain the Directory Entry Code of this directory entry in the FLAG field and the
month sub-field of the DATE field. This other DEC becomes the backward link.

Figure 5-8 represents one directory entry record illustrating a file with two extents.

===
| |
	- ATTRIBUTES [active directory entry record]						
		- FLAGS [Modified and not backed up]					
			- DATE of last modification [July 15, 1983]				
				- EOF OFFSET [position to PUT next byte = 189]			
					- LRL [256]		
						- Name [HITINFO]	
							- Extension [SCR]
-- ----- -- -- ----------------------- --------							
10 47 7B BD 00 48 49 54 49 4E 46 4F 20 53 43 52							
96 42 96 42 25 00 1D 46 23 40 FF FF FF FF FF FF							
----- ----- ----- ----- ----- ----- ----- -----							
							- Extent 4 [unused]
						- Extent 3 [unused]	
					- Extent 2 [starts cyl 35, gran 2, 1 gran]		
				- Extent 1 [starts cyl 29, gran 2, 7 grans]			
			- ERN [37 sectors written]				
		- User PASSWORD [blanks]					
	- Owner PASSWORD [blanks]						
===

Figure 5-8: Illustration of a directory record entry

6-1

6. Disk File Access and Control
6.1 GENERAL FILE STRUCTURES
The primary reason we make use of computer systems is to aid us in managing large volumes
of data. Our computers utilize the Disk Operating System (DOS), the fundamental purpose
of which is to make an easier job of handling the storage of that data. We usually want
rapid access to data; therefore, the random access disk storage device is the selected
storage medium due to its inherent speed in accessing data. These devices take two forms,
floppy disks with either one or two heads which use a single diskette with corresponding
one or two surfaces, and winchester hard disk drives which consist of one or more
platters with each platter consisting of two surfaces. The hard disk drive may use either
a fixed or removable media.

Regardless of the disk drive type, each surface is divided into concentric circles of
storage area called tracks. Each track is then subdivided by a fixed number of subareas
called sectors. Although the number of sectors per track may vary from one media type to
another, the number of sectors in each track of the same media is constant. The DOS
assigns numbers to every sector, every track, and every surface. Surfaces are numbered
consecutively by one starting from zero. Tracks are numbered consecutively by one
starting from zero at the outermost portion of the disk giving the innermost track the
highest number. A CYLINDER consists of the like numbered tracks on all surfaces. For
example, on a two-surface media, track zero of surface zero and track zero of surface one
are grouped together into cylinder zero. The sectors in each track are numbered starting
from zero. Thus, each track contains like numbered sectors - regardless of track number
or surface. Therefore, each sector on a disk is designated unique by its respective
sector, surface, and track numbers.

Data is stored in these sectors. Obviously, if your program had to keep track of all the
sectors your data was occupying, you would have to make the program necessarily complex
[if this is not obvious, you will become a believer after reading the section on file
access]. The DOS alleviates you of this task by totally managing the storage space. It
does this by associating an 8-character name with the storage areas assigned to a
logically connected set of data called a file. Thus, the name becomes a FILENAME. The DOS
also permits a 3-character extension to be affixed to that name to better classify the
type of file: data, text, command program, etc. This extension is termed the FILE
EXTENSION. You can attach a unique PASSWORD and access level such as EXECute only or READ
only to each file in order to provide a greater degree of protection to the information
contained in the file. Furthermore, the file can be placed on any of up to eight disk
storage devices. Each disk drive is assigned a DRIVE number from zero to seven.
Therefore, to uniquely reference a file, we put together the NAME, EXTENSION, PASSWORD,
and DRIVE and refer to the result as a FILE SPECIFICATION. The term, file specification,
is rather long so we shorten it to "filespec".

In order to assign space on a disk for storage of file data, the DOS groups together a
quantity of sectors into a GRANULE. The size of the granule varies according to the
capacity of the media. This variation in size was discussed in the GRANULE ALLOCATION
TABLE section. The DOS assigns space dynamically to a file. This means that space is
reserved for the file only when the file needs it. The process whereby the system looks
for additional space is termed the ALLOCATION process. The DOS would prefer to allocate
granules that are connected sequentially to each other. The sequential connections are
only logical in nature, not physical connections. The DOS prefers to access a disk drive
device in a particular order to optimize the transfer of data. Since the time to step the
head from one cylinder to another is greater than the time to access a sector in the
cylinder where the head is positioned, it is far preferable to access all sectors of a
cylinder before stepping to another cylinder. If we look at sequential access of a file,
we then would want to conceptualize a sequential connection to start from track zero,
surface zero, sector zero incrementing the numbers like the odometer in a car as it

6-2

travels the turnpike. In this manner, all sectors of a cylinder are accessed before the
disk drive has to step to the next cylinder.

It is not always possible to allocate space consecutively. For instance, say we want to
add a granule to an existing file but the next granule consecutive to the last granule of
the file has already been allocated to another file. Our file must then be fractured into
more than one piece. We term each piece of the file an EXTENT. The system's file access
routines logically connect each EXTENT so to a program accessing the file, it appears as
if the file exists as one continuous allocation of space.

The disk directory stores all the allocation data on each file contained on the disk.
Allocation data on a particular file is stored in a directory entry record. Each record
can hold the allocation information on up to four extents. The first record is termed the
File's Primary Directory Entry or FPDE while all succeeding directory records are
considered to be the File's Extended Directory Entries or FXDE records. In order to
access the file data, the system's file access routines must utilize the information
contained in the file's FPDE.

It is impractical to have to read the FPDE each time another sector of data is
transferred. Therefore, the scheme employed is to access the directory once in a process
to obtain all of the file's access information and place the information into a memory
area termed a File Control Block (FCB). The actual process is termed "opening the file".
The reverse process, that of updating the directory entry once the access of a file is
complete is termed "closing the file". The DOS provides SuperVisor Call requests to
perform the OPEN and CLOSE functions. These type of requests are called "file control"
functions since they give you the means of controlling the disk file. Other types of
requests are associated with accessing the data in a file and are thus called "file
access" requests. INTERFACING VIA SUPERVISOR CALLS, chapter 7, describes each access and
control SuperVisor Call.

Data is generally collected into units called RECORDS. These may be fixed-length records
with each record being exactly the same length or they may be variable length records
where the length of the record varies from record to record. Fixed-length records can be
accessed sequentially (i.e. starting from record zero and continuing to the last record
of the file). This type of access is termed RECORD I/O. The DOS supports fixed length
records from one to 255 characters in length by automatically handling the blocking and
deblocking of records into and out of the disk file I/O buffer. Since the DOS
standardizes disk file I/O buffer sizes at 256 characters each, record lengths of 256 are
handled directly without recourse to the blocking and deblocking used on shorter records
and these records can also be transferred to and from the disk more quickly. Record sizes
larger than 256 can be used in an application program; however, the blocking and
deblocking of records must be performed entirely within the application while, in
general, the application will use 256-character records to and from the system.
Henceforth, any reference to the term RECORD will consider to be associated with a record
which ranges from 1 to 256 characters in length.

Fixed length records can also be accessed directly by record number (which is customarily
called RANDOM ACCESS). The DOS provides SuperVisor Call requests to position the record
pointer maintained in the File Control Block to the record of choice. The application can
then address the record via READ or WRITE SuperVisor Call access requests. Additional
SVCs provide other functions associated with the access of a file.

The structure of variable length records is highly dependent on the programming language
used to code the program. Most high-level languages (BASIC, FORTRAN, etc) provide
variable length file structures which may not be equivalent across each language. One
common structure which is supported by more than one language is to use a character or
character combination to represent the end of the record. The BASIC language operating
under Version 6 uses the ASCII code X'0D' which is a CARRIAGE RETURN to indicate the end

6-3

of a variable length record. Some systems use CARRIAGE RETURN followed by LINE FEED
(X'0A'). Some languages use a one-byte or two-byte length indicator within the record to
indicate the actual length of the record. Program files that are directly executable are,
in fact, variable length record files which use a one-byte length field within each
record. These "load module" files even include a record TYPE character which permits the
specification of different records for different purposes within the same file.

Some files may not even be able to be conceptualized as containing fixed or variable
length records. You might consider a word processing text file as not falling into the
above classification although each paragraph may, in fact, be a "record". Other files may
be variable length but include an index which points to the beginning of each record or
group of records. The records are accessed sequentially after the record pointer is
extracted from the index. This type of access is usually called Indexed Sequential Access
Method (ISAM). Both the operating system's library files and the Partitioned Data Set
files supported under the PRO-PaDS utility are ISAM files. The bottom line is for you to
determine the type of access you want to employ after exploring the nature of your data
and understanding how the system accesses disk files.

There are three methods which are used in application programs to access disk files. The
first method is to consider the file as a stream of characters. This access method uses
the GET and PUT character I/O SuperVisor Call functions and was discussed in chapter 3,
DEVICE INPUT/OUTPUT INTERFACING. The second method is where your file contains physically
consistent fixed length records. In this case, it is probably practical to consider
RECORD I/O. The third method is to use 256-byte records and perform your own blocking or
deblocking as required.

The following sections describe the methods used to control and access files. The last
section completely describes the fields in the File Control Block which is used in all
interfacing of disk files.

6.2 CONTROLLING DISK FILES
When a file is to be opened for access, the application program initially provides the
file specification to the DOS by placing it in the File Control Block (FCB) which will be
used for the file. The program then invokes the OPEN function. The DOS, in turn, searches
the disk drive(s) for the file's directory entry. Once found, it replaces the filespec in
the FCB with information needed by the file access routines. The system then manages the
FCB contents according to the demands of the file access requests. The following sections
will illustrate some of these control functions.

6.2.1 Getting Filespecs
From where does a program obtain the filespec? You are already familiar with the DOS
commands that appear to get the filespec from the command line. Let's take a look at this
method. You will learn from the chapter on SuperVisor Calls that when the system
transfers control to a program, register pair HL contains a pointer to the first non-
blank character on the command line which terminated the name of the executing program.
Let us assume that our program will use a command line syntax as follows:

PROGRAM-NAME FILE-SPECIFICATION (PARAMETERS)

The command-line pointer will be pointing to the first character of the file
specification. For the moment, let's make the filespec entry mandatory. We can then code
the routine to fetch the filespec as follows:

 ENTRY LD DE,FCB1 ;Point to FCB
 LD A,@FSPEC ;Identify the SVC
 RST 40 ;Invoke the SVC
 JP NZ,SPCERR ;Transfer on error

6-4

The @FSPEC SVC will transfer the filespec contained on the command line into the FCB . Any
conversion to upper case will be performed as required which permits the entry of the
filespec in upper or lower case. Typically, you would want to provide a default file
extension to save the user the time it takes to enter up to four additional characters
when the application is designed for a class of file (such as TXT, ASM, JCL extensions).
A default file extension will not override any extension entered with the filespec. A
default will add an extension provided by the program only if the user omitted one. This
default can be added as follows:

 PUSH HL ;Don't disturb command line pointer
 LD HL,TXTEXT ;Point to storage of default
 LD DE,FCB1 ;Point to FCB as required
 LD A,@FEXT ;Identify the SVC
 RST 40 ;Invoke the SVC
 POP HL ;Restore the pointer
 .
 .
 .
 TXTEXT DB 'TXT' ;Data field for default extent

Other times we may want to prompt the user to enter a filespec. This is achieved through
a combination of @DSPLY and @KEYIN as follows:

 LD HL,SPCMSG$;Point to message
 LD A,@DSPLY ;Identify the SVC
 RST 40 ;Invoke the SVC
 LD HL,FCB1 ;Use the FCB for input buffer
 LD BC,31<8.OR.0 ;Specify 31 chars & C=0
 LD A,@KEYIN ;SVC for line input
 RST 40 ;Invoke the SVC
 JP C,GOTBRK ;Transfer on <BREAK>
 LD D,H ;Copy the FCB pointer to DE
 LD E,L
 LD A,@FSPEC ;Now parse the entry to
 RST 40 ; handle l/c to U/C
 JP NZ,SPCERR
 .
 .
 SPCMSG$ DB 'Enter the input filespec',13

This routine will display the "Enter the input filespec" message and place the user input
into the FCB. The @FSPEC request will then process the user entry to convert any lower
case to upper case while it tests the validity of the entry.

6.2.2 Password Protection of Files
Any discussion concerning the opening of disk files must begin with a discussion of file
password protection. This is a subject that has not been too well understood and deserves
sufficient explanation. File protection is a process whereby access to a file can be
limited to either a level of access (read, write, remove, etc,), to the entry of a
password, or to both a level of access and a password requirement. The DOS achieves this
file protection capability through a combination of two password fields and a protection
level field for each file. The file password fields are termed the OWNER password and the
USER password. Users familiar with earlier versions of the DOS may be familiar with the
earlier corresponding terms of UPDATE and ACCESS which were changed in release 6 to OWNER
and USER respectively to avoid any confusion with the protection level.

The protection level field (we will use the term PROT) is associated with the USER
password and indicates what level of access to the file is granted when the USER password
is part of the file specification at the time that the file is opened. The different
levels of access granted are shown in figure 6-1. Suppose that the access level is READ.
If the filespec includes the USER password, then the file will be opened but the system

6-5

will only permit the opener to read the file, not to write to it. Any SuperVisor Call
request for updating, writing, renaming, or removing will return the "Attempt to access
protected file" error. If the OWNER password is part of the filespec when the file is
opened, the system will permit all levels of access regardless of any USER password or
protection level.

Prot Effect
NONE You cannot access the file. This PROT is used for system files.
EXEC You can only run the program file.
READ You can read the file.
UPDATE You can write to an existing file without extending it.
WRITE You can write to and extend the file.
RENAME You can change the name/extension of the file.
REMOVE You can delete the file from the disk.
FULL You can change the protection level and passwords of the file.
Note: Each level grants the access listed above it.

Figure 6-1 Access protection levels

Passwords are assigned to files in one of two ways. If a password is part of the filespec
when the file is first created with the @INIT SuperVisor Call function, then that
password will become both the OWNER and USER passwords. The protection level will be FULL
but since both password fields are in use, the password must be entered for any access to
the file. The second method of applying password protection is to use the ATTRIB library
command. This command allows you to change both passwords and protection level - assuming
you have the access authority based on the file's existing protection.

A password can be composed of nothing but blanks. This is in effect, no password at all
since the entry of NOTHING is interpreted as a blank field and thus will grant access
according to the level associated with the password field. For instance, if the OWNER
password field is blank, the file has no protection whatsoever even if the USER password
field is non-blank because a filespec without a password entry will match the blank OWNER
password thus granting full access. It is important for the OWNER password to be non-
blank if the file is to be protected in any manner.

A common situation is to find the OWNER password kept private to those individual(s)
either maintaining the application or responsible for the integrity of the file contents
while providing a blank USER password with a protection level set to the minimum level of
access needed by the user. For instance, if the user only needs to read a file, set the
protection level to READ. This user can then read the file without having to bother with
a password but that user cannot write to the file, cannot remove it from the disk, cannot
rename the file, nor can the user change the protection level of the file. However, the
maintainer can step in to deal with file maintenance at a higher level of access given
the OWNER password.

Where use of a file needs to be restricted to an individual out of a group of
individuals, then the USER password field should have a non-blank password that is
distinct from the OWNER password. The access protection level is still kept to the
minimum necessary for the user. This scenario will then permit that individual the
minimum access to the file while excluding all others (unless, of course, the user shares
his knowledge of the password with others).

It may be practical for any given installation to consider protecting all files to the
minimum access level expected of them. Thus any file whose primary access is READ only
would be protected accordingly. There will be less chance to inadvertently remove the
file by mistake or mistakenly write to it - a common error when dealing with applications
that frequently prompt the user for the entry of file specifications.

6-6

A high level language permits you the opportunity of indicating your access level in the
language syntax. For example, BASIC requires you to specify whether a sequentially
accessed file is to be INPUT or OUTPUT corresponding to READ or WRITE. The operating
system has no facility for identifying the maximum level of access desired for any
particular opening of the file except through the passwords and access protection level.

6.2.3 Opening Files
Files opened with UPDATE or greater access are indicated as open in their directory entry
record by the setting of a "file open bit". Any subsequent open attempt will result in a
force to READ access protection and return the appropriate "File already open" error
code. This is designed primarily for the use of shared access multiplexed disk drives
where files are shared among a number of users. This arrangement will restrict the
altering (but not reading) of file data to only one user at a time. It is therefore
important for applications to CLOSE files as soon as the application is finished with the
file access. It is also important for applications to trap the "File already open" error
and take appropriate action. Realize that files protected to READ only, may be opened by
multiple users and still be opened for updating by the maintainer providing the proper
OWNER password is provided. The importance of maintaining proper levels of file
protection through the use of passwords and protected access levels should not be taken
lightly.

For the convenience of applications that access files only for reading, a facility for
forcing the file access to READ only when a file is opened has been provided in the DOS.
This facility will inhibit the "file open bit" and set the File Control Block access
permission to READ (providing that the access permission level granted according to the
password entered was READ or greater). Under this linkage, it is not necessary to close
the file when you are finished accessing it as no directory updating will be done. Of
course if you want the system to recover the filespec and place it into the FCB , you will
have to close the file. Check the discussion covering the FORCE-to-READ flag (bit-0 of
the SFLAG$) in the @FLAGS SuperVisor Call. Note that once the FORCE-to-READ flag has been
set, the next @OPEN or @INIT SuperVisor Call request will automatically reset the bit
after satisfying the request.

When a file is opened, the system needs to be told where the disk file I/O buffer is
located. This buffer is used to transfer a full sector of data to and from the disk. The
system also needs to be told what Logical Record Length (LRL) is to be used while the
file is open. If the LRL at open time differs from the LRL of the file as noted in the
directory, the OPEN routine will return an "LRL open fault" error code BUT THE FILE WILL
STILL BE PROPERLY OPENED ACCORDING TO THE LRL PASSED IN THE OPEN REQUEST. The error code
is your indication that a different LRL is being used. If the LRL is 256, then the system
does not block and deblock the data records and will expect that all data to I/O will be
using the disk file I/O buffer. If the LRL is in the range <1-255>, then the disk file
I/O buffer is used only for transferring full sectors to and from the disk. Say, for
example, a file has 200-byte records, the second record of the file is partially
contained in the first sector and partially contained in the second sector. The file is
said to SPAN two sectors. This requires a separate buffer to hold the record data while
the system uses the disk file I/O buffer for the transfer of the sector. The program then
will specify a USER RECORD buffer (UREC) that will be used by the system to transfer the
data records to and from the disk file I/O buffer on each I/O request. Thus, whenever a
file record spans two sectors, the system will have the necessary buffering regions to
fully block and deblock the record. Note that the arrangement of separate disk file I/O
buffers for each file provides greater flexibility for accessing multiple files
coincidentally.

To illustrate the linkage necessary to open an existing file, we will be referencing an
80-byte record length file with the specification, BULKLOAD/DAT:2. The file has an OWNER
password, blank USER password with protection level of WRITE. The filespec has been
placed into the File Control Block as shown in figure 6-2. Note that the filespec is left
justified and is terminated with an ETX (X'03') character. The ETX is automatically

6-7

placed as the terminator when a file specification is parsed into the FCB by the @FSPEC
SuperVisor Call function. A carriage RETURN (X'0D') could equally be used if your program
is completely controlling the placement of the filespec into the FCB. The remainder of
the FCB contents is inconsequential as anything past the ETX or RETURN is completely
ignored by the OPEN process.

														E																	
B	U	L	K	L	O	A	D	/	D	A	T	:	2	T																	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Figure 6-2 FCB prior to OPEN

Once the FCB is filled with the filespec, we can open the file using linkage such as
this:

 LD HL,FILEBUF ;Point to the disk file I/O buffer
 LD DE,FCB1 ;Point to the File Control Block
 LD B,80 ;Specify the Logical Record Length
 LD A,@OPEN ;Identify the SVC
 RST 40 ;Invoke the SVC
 JP NZ,IOERR ;Transfer on a returned error
 .
 .
 .
 ORG $<-8+1<8 ;Set PC to page origin
 FILEBUF DS 256 ;Reserve space for file buffer

Many programs are coded so that the data areas are placed at the end of the program. As
you become adept at file handling, you will discover that accessing file buffers that are
placed at a page boundary is not only easier, but sometimes more efficient depending on
your specific use of the buffer. The "ORG" pseudo-OP in the above routine serves the
purpose of establishing the program counter at a page origin. This provides for the
access of each byte in the buffer by indexing the low-order byte of a 16-bit register
pair.

If you are going to create a new file, all that needs to be changed in the routine
illustrated is to replace the "LD A,@OPEN" with "LD A,@INIT". Specifics on the protocol
of @INIT are located in chapter 7. The @INIT SuperVisor Call can also be used to open an
existing file. Your use of either @OPEN or @INIT is dependent on the purpose of the file.
If your application is going to write a file that can be either existing or new, then
@INIT is the choice. @INIT will inform you as to whether it located an existing file or
created a new one (the carry flag is set if a new file is created). This information may
be useful to your application. If it is a requirement that the file be existing, then
@OPEN should be used.

If it is mandatory that the file NOT be existing, then the system provides a few
capabilities to support this requirement. You can first @OPEN the file. If the file is
successfully opened, then you know that the file is existing and can take the appropriate
action. If the file did not open successfully, you should check the error code returned
by the system to verify that it returned a "File not found" error as other errors may not
imply the non-existence of the file [for instance, the LRL provided with @OPEN may be
different than that stored in the directory entry giving an "LRL open fault" error].
Another interesting technique for detecting the existence of a file is to attempt to
RENAME it using the same name. This can be done with the @RENAM E SuperVisor Call by
copying the filespec into a second FCB for use as the "new" but identical name. The
@RENAME routine will always first check the existence of the file before determining
RENAME permission and verifying that the new name differs from the old. If @RENAME
returns a "File not found" error, you will know that the file does not exist. If the file

6-8

does exist, @RENAME should return either an "Illegal access to protected file" error (if
you do not have RENAME permission) or an "Illegal file name" error due to the duplicate
name. The @RENAME method uses slightly less system overhead and thus will execute faster.
It also will not attempt to set the directory's "file open bit" thereby performing one
less directory write.

6.2.4 Closing Files
The reverse operation of opening a file, be it @INIT or @OPEN, is the CLOSE operation.
Remember that files opened with UPDATE or greater access must be closed in order to
update the directory entry record. The updating process will change the modification date
and set the MODification flag bit if any writing has occurred. The updating process also
alters the end-of-file information if a sequentially accessed file has been either
extended or shortened. Finally, the updating process resets the "file open bit". The
CLOSE operation uses the information that the system has been maintaining in the FCB .
Thus, you close a file simply by passing the FCB pointer to the SuperVisor Call as
follows:

 LD DE,FCB1 ;Point to the open File Control Block
 LD A,@CLOSE ;Identify the SVC
 RST 40 ;Invoke the SVC
 JP NZ,IOERR ;Transfer on a returned error

6.2.5 Miscellaneous File Control
Before we leave the topic of file control let's address some lesser used control
requests. First we have the removal of a file. The system's REMOVE library command can
delete a file from the disk when at DOS Ready or command level. You could also remove a
file by passing a "REMOVE filespec" command line to the system via the @CMNDR SuperVisor
Call request. If we consider the DOS command level to be the highest level, then the
lowest level is via assembly language SVCs. The SVC method of file removal requires that
the file first be opened. The reason for this requirement is based on the overlay
structure of the system. The file control routines are resident in system overlays rather
than in the memory resident portion of the system like the file access routines. It so
happens that the routines to open a file are in an overlay (SYS2) different from the
overlay containing the routines to remove a file (SYS10). Since the system has no
provision for system overlays to invoke functions in other overlays, your application
program "supervises" the two functions of opening and removal. This linkage is as
follows:

 LD DE,FCB1 ;Point to the FCB holding the filespec
 LD A,@OPEN ;Identify the SVC
 RST 40 ;Invoke the SVC
 JR Z,OPENOK ;Continue if no open error
 CP 42 ;Check on "LRL open fault"
 JR NZ,RMVERR ;Error if anything else
 OPENOK LD A,@REMOV ;Identify the SVC
 RST 40 ;Invoke the SVC
 RMVERR JP NZ,IOERR ;Transfer on a returned error

Notice that we did not need to reference a disk file I/O buffer since no I/O was going to
be performed (why waste the three bytes for the instruction?). Also, since we are going
to ignore "LRL open fault" errors, there is no need to put an LRL value into register B.

When the system removes a file, it first deallocates the space taken up by the file by
resetting the appropriate bits in the Granule Allocation Table. In the deallocation
process, all of the file's extended directory entry (FXDE) records are zeroed and their
corresponding Directory Entry Code (DEC) positions freed for future use. Then the hash
code is removed from the file's primary directory entry (FPDE) record DEC position of the
Hash Index Table used by the file. Finally, the ACTIVE bit of the FPDE record is reset.
The rest of the information in the FPDE is left unaltered. It is thus possible to
"unremove" a file that had a maximum of four extents by activating its FPDE, restoring

6-9

the hash code in the proper DEC, and reallocating the space in the GAT provided the space
has not been reused by some other file.

Two other lesser used SuperVisor Call requests are @LOAD and @RUN. It's more important to
explain their use rather than illustrate their use. Most programs are stand-alone
programs. They are totally self contained in terms of the program code. When programs get
large or when programs must access large amounts of data in memory, it may be necessary
to segment the program into two or more sub-programs. Depending on the functions
performed by the program, this segmentation can take two forms. Where the functions can
be divided into separately chained processes (such as a language compiler that can
separate parsing from code generation), one sub-process can RUN the other sub-process.
Where the functions of the program must be divided up and controlled by a supervising
sub-program, the available memory can be divided into a resident sub-program region and
an overlay sub-program region - similar to the overlay structure of the operating system.
Thus the supervisor will LOAD each overlay as required and transfer control into the
loaded sub-program.

When an executing program needs to either @RUN or @LOAD another program, there is one
point that is most important to understand. Although the @RUN and @LOAD functions utilize
the system file buffer, they require a user File Control Block. Also, either request will
return to the calling program if an error is detected in the loading of the program file.
Therefore, it is essential that the program being loaded must not overwrite either the
FCB used to access it nor the error handling routines following the @LOAD or @RUN linkage
requests! To ignore this situation is to invite disaster to come knocking at your door.

6.3 ACCESSING DISK FILES
The concept of accessing disk files conveys the idea of transferring data to and from the
disk file. Before the file can be accessed, it must be opened as discussed in the
preceding section. Once a file has been opened, any of a number of file access SuperVisor
Call requests can be made depending on the specific nature of the desired function.

It may be useful to understand exactly how the operating system's file access routines
react in order to satisfy our request. Let us say, for example, that we want to read the
100th record of the BULKLOAD/DAT file. The 100th record has a record number of 99 since
records are numbered starting from record 0. We establish the linkage to accomplish this
as follows:

 LD DE,FCB1 ;Point to the opened FCB
 LD BC,99 ;Specify the record number
 LD A,@POSN ;Identify the positioning SVC
 RST 40 ;Invoke the SVC function
 JP NZ,IOERR ;Transfer on error
 LD HL,UREC1 ;Point to our record buffer
 LD A,@READ ;Identify the SVC request
 RST 40 ;Invoke the SVC
 JP NZ,IOERR ;Transfer on an error return

The first part of the linkage positions the FCB so that the next I/O operation will deal
with record number 99 - the 100th record. After a successful positioning, the record will
be read into the record buffer. This is a very brief explanation. Let's examine in
detail, the sequence of steps actually executed by the file positioning routine, @POSN.

First, since the file's LRL is less than 256, the 100th record must be deblocked from the
sector containing the record (or sectors if by chance the 100th record spans two
sectors). By multiplying the record number (99) by the logical record length (80), the
value 7920 is obtained. This represents the first byte of the record in OFFSET position
240 of relative sector number 30.

6-10

Next, it would be very useful if the disk file I/O buffer already contained relative
sector number 30. The Next Record Number (NRN) is the relative sector number. However,
before we can make use of the NRN, we have to make sure that the buffer currently
contains the sector identified by the NRN. To determine this, @POSN first checks the
"buffer current" flag. If the buffer contains the sector identified by the NRN, @POSN
then checks if the NRN and the sector number needed to satisfy the position of record 99
are in agreement. If the file buffer currently holds the needed sector, it immediately
transfers to a routine which checks on end-of-file conditions and returns to the caller.

If the buffer does not contain the needed sector, then the NRN must be changed to the
relative sector needed. But first the system must check to see if it has to write the
buffer contents back to the disk file. This determination is based on whether the buffer
is current and contains changed data which has not yet been written to disk (perhaps the
result of a previous record written that did not span two disk sectors and thus did not
require any physical writing).

When the @READ request is passed to the system, again the system must first check if the
disk file I/O buffer contains any data which is updated but not yet written to disk. The
@READ routine does not know that an @POSN request immediately preceded it. Then, since
the LRL is less than 256, the @READ routine passes a series of character read requests
for as many characters as that identified by the LRL. Each character is placed into a
consecutive location of the user record buffer, which in this case is UREC1. The
character read requests are virtually identical to those requested by an @GET SuperVisor
Call request as both are performed by the same routines. Finally, the system adjusts the
Next Record Number and OFFSET pointers so that the next @READ references the next
consecutive record.

We now have to look at what happens when a character read is requested. First, the system
checks to see if the end of the file has been reached so it can return the "End of file
encountered" error code. Next, it checks to see if the byte is contained in the current
disk file buffer (i.e. if the buffer is current). If the buffer is not current, the
sector identified by the NRN must be read from disk. Before the system even wants to
calculate what sector that represents, it has to ensure that the requesting user has READ
permission to the file. This it can do by examining the access level stored in the FCB.

When it concludes that proper access is available, it proceeds to calculate the logical
cylinder and sector that the file's NRN relative sector represents. If you thought the
process was complex up to this point, hang on to your hat! The relative sector (remember
number 30?) is converted to a relative granule number and relative sector offset in that
granule. In this case, we will assume that the file is stored on a 5-1/4" floppy disk ette
formatted in double density with six sectors per granule. The system obtains the sectors
per granule data from the Drive Control Table (DCT) for the drive containing the file.
This means that the relative granule needed is granule number 5 (30 divided by 6). Since
the remainder of the calculation is zero, the relative sector offset in that granule is
number 0 which is the first sector of the granule.

The system then examines the EXTENT fields of the FCB to determine what extent contains
data covering relative granule number 5. To do this, the system uses the cumulative
granule figures contained in the EXTENT fields. After determining that the granule is in
one of the existing extents, the system can calculate the needed cylinder and relative
sector in that cylinder by the following process. A few numbers may help this
explanation. Say the file has two extents. The first extent contains three granules
(numbered 0-2), while the second extent contains twelve granules (numbered 3-14) and
starts on the third granule of cylinder 25. Figure 6-3 illustrates part of the second
extent by cylinder and granule. First subtract off the number of granules contained in
all extents previous to the desired extent and add the result to the starting granule
number of the extent (5-3+2=4). Next, divide that result by the number of granules per
cylinder derived from DCT information and keep the remainder (4/3=1 remainder 1). The

6-11

result is the relative cylinder from the starting cylinder while the remainder is the
relative granule offset in that cylinder. If we now add the relative cylinder (1) to the
starting cylinder (25), we compute the desired granule is in cylinder 26. Furthermore,
the relative granule offset is granule number 1 (the second granule). Thus, by using the
starting cylinder and granule of the extent, the relative cylinder and sector numbers for
the starting sector of the needed granule are obtained. Finally, the granule offset is
used to get the sector number of the desired sector. Since the granule offset is zero,
our needed sector is the first sector of granule 1 which is sector 6. Thus, cylinder 26,
sector 6 is passed by the system to the disk driver which reads that sector into the file
buffer. Are you still with us?

 __
 CYL | 25 || 26 | 26 | 26 || 27 | 27 | 27 || 28 | 28 | 28 ||...
 GRAN | 2 || 0 | 1 | 2 || 0 | 1 | 2 || 0 | 1 | 2 ||...
 | || | | || | | || | | ||...
 GRAN | 3 || 4 | 5 | 6 || 7 | 8 | 9 || 10 | 11 | 12 ||...
 SEC | 18 || 19 | 20 | 21 || 22 | 23 | 24 || 25 | 26 | 27 ||...
 |____||____|____|____||____|____|____||____|____|____||__

 Note: Top figures are physical; bottom figures are relative.

Figure 6-3 Illustration of 2nd extent for BULKLOAD/DAT

If, by chance, the system cannot find the desired granule in any of the extent fields of
the FCB, it must go back to the directory using the DEC and DRIVE fields of the FCB and
see if the granule is actually part of the file. This would only happen if the file had
more than four extents or the access was extending the file (at which point additional
space would be allocated).

Upon recognition of the complexity of the preceding discussion, it will severely limit
your desire to control your own file allocations. The DOS does the job well; however, the
system must entertain sufficient overhead in order to access the proper disk sector and
dynamically allocate additional file space as required. Also, the system must inhibit the
requesting program from violating protection levels.

Most of the file access SuperVisor Call requests are self-explanatory and their use is
evident from the descriptions contained in chapter 7, INTERFACING VIA SUPERVISORY CALLS.
An important point worth remembering is that the system will automatically advance the
record pointers (NRN and OFFSET) on each @READ and each @WRITE request AFTER PERFORMING
THE OPERATION so that the next record accessed is consecutively sequential to the one
just accessed. This provides sequential I/O without need of @POSN calls. What we would
like to discuss here is some suggested uses for these file access SVCs.

6.3.1 Specific Access Requests
The @GET and @PUT requests are fundamentally useful when the program is to be device
independent. By using character I/O, the specification can be either a devspec or
filespec. Of course if a device was opened, all of the other file access routines would
return a "File not open" error code so you may want to restrict the access to @PUT and/or
@GET or use bit-7 of the FCB as an indicator of file versus device and take the
appropriate action.

The function of @BKSP is to backspace one record based on the LRL. When a disk file is
accessed via @PUT and @GET, it is usually opened with an LRL of 256. However, if you try
to perform a character backspace, the system will backspace a full sector. The easy way
around this is to temporarily change the LRL in the FCB to 1 prior to issuing the @BKSP
then restoring the LRL after the @BKSP call. The following code illustrates this method:

 LD DE,FCBX ;Point to the open FCB

6-12

 LD HL,FCBX+9 ;Point to the LRL field
 LD B,(HL) ;P/u the current LRL
 LD (HL),1 ; & reset to LRL=1
 LD A,@BKSP ;Identify the SVC request
 RST 40 ;Invoke the SVC
 LD (HL),B ;Reset to original LRL
 JP NZ,IOERR ;Transfer on error

If you want to add sequential data to the end of an existing file, you will need to
position to the end of the file after it is opened. Use the @PEOF SuperVisor Call request
for this purpose. The SVC will return an "End of file encountered" error if the request
is successful. Any other error code indicates a malfunction. This is one of the few
system requests that return an error code upon success so you should be careful when you
use it.

The @RREAD request is useful when reading nested files. Nested files are those where you
are accessing each consecutively but not coincidentally. In this case, the same disk file
I/O buffer can be used for each file. When you switch from one file to another, issue a
@RREAD so that the system reloads the buffer with the sector that was being accessed for
the last record read or for the last character obtained from @GET . The @RREAD request
will force a rereading of the sector identified by the NRN provided that the LRL is
either 1-255 or the file was accessed via @PUT or @GET. What do you do if you were using
LRL=256 and @READ requests while maintaining your own offset pointer. All you need do in
this case is to decrement the NRN and issue another @READ. For example, the PRO-CREATE
editor assembler available from MISOSYS uses sector I/O for reading source files. PRO-
CREATE maintains its own offset pointer as it extracts lines of code from the disk
buffer. When it detects the "*GET filespec" request for including a nested file, it saves
the current FCB in a save area and then opens the requested file using the same file
buffer. When the end of the second file is reached, PRO-CREATE restores the saved FCB of
the original file and executes the following code:

 LD DE,FCB ;Point to the opened FCB
 LD HL,(FCB+10) ;Obtain the current NRN,
 DEC HL ; decrement by one
 LD (FCB+10),HL ; and update the FCB
 LD A,@READ ;Identify the SVC function
 RST 40 ;Invoke the SVC
 JP NZ,IOERR ;Transfer on error

The @RWRIT SuperVisor Call request would be used where you want to read a full sector
(LRL=256) into the disk file I/O buffer, alter it directly in the buffer, then
immediately write that buffer back to disk. The @RWRIT will force the NRN that was
automatically advanced by the @READ request to be decremented by one so that it repoints
to the sector corresponding to the buffer contents. It then performs the requests
necessary to write the buffer to disk. Note that @RWRIT is not to be used when the LRL is
not equal to 256 as this SuperVisor Call does not reference the user record buffer.

The @WEOF SuperVisor Call request allows you to update the end-of-file (EOF) information
in the directory while still keeping the file in an open state. Obviously, a similar
function can be performed with an @CLOSE followed by an @OPEN; however, complications can
prevail with a CLOSE-OPEN combination. Remember that the close operation restores the
filespec to the FCB but cannot reclaim the password. Therefore, if the FCB was
referencing a password protected file, the subsequent OPEN will fail unless you had saved
the original filespec somewhere in the program and restuffed the FCB prior to the second
OPEN request. Also, the CLOSE-OPEN combination updates the MOD flag and date as required,
and checks to see if it can deallocate any unused file space. This takes time. If all you
want to do is to update the EOF, use the @WEOF function.

One last function that can be performed by the file access routines is the allocation of
disk space to a file. A file can be pre-allocated by the CREATE library command but that

6-13

also inhibits any deallocation of unused space. The following routine will allocate file
space without any restriction on deallocation to a file opened with LRL equal to 256.
Register pair DE is expected to be pointing to the file's FCB. The file's size is passed
in register pair BC as the number of 256-byte records. A successful allocation will be
indicated by the setting of the Z flag.

 WRERN LD A,B ;If space = 0, don't
 OR C ; do any allocation
 RET Z
 DEC BC ;Adjust for 0 offset
 LD A,@POSN ;Position to the "size"

 RST 40
 LD A,@WRITE ;Write a dummy sector
 RST 40
 JR NZ,WRERN1 ;Branch on error
 LD A,@REW ;Now rewind the file
 RST 40
 LD HL,0 ;Set ERN record to 0
 LD (FCB1+12),HL
 RET
 WRERN1 CP 27 ;Disk Full?
 RET NZ ;Back on some other error
 LD A,@REMOV ;Remove what can't fit
 RST 40
 LD A,27 ;Back with error code
 OR A ; and NZ flag
 RET

Examine the functions of the file access routines listed in chapter 7. They will relate
the scope of access permitted by the operating system. More complex levels of access such
as ISAM, or random access of variable length records can be supported by building
appropriate routines from the provided record I/O and character I/O routines. The
following section will provide details on each field of the File Control Block. Most
applications will not have to bother with the contents of the FCB. If you feel the need,
go to it.

6.4 The FILE CONTROL BLOCK (FCB)
The File Control Block (FCB) is a 32-byte region that is used by the system to interface
with a file that has been "opened" for access . Its contents are extremely dynamic. As
records are written to or read from the disk file, specific fields in the FCB are
modified. It is extremely important that during the time period that a file is open, you
avoid changing the contents of the FCB unless you are sure that its alteration will in no
way effect the integrity of the file.

The FCB initially contains the specification of the file that is to be opened for access.
Upon a successful "open", the system will replace the specification with data derived
from the file's directory entry. The file specification (without any password field) will
be returned to the FCB when the file is closed. The information contained in each field
of the FCB is as follows:

6.4.1 TYPE code of the control block - <Byte 0>
This byte contains certain attributes of the control block. It correlates to the TYPE
byte of the Device Control Block, especially in light of the fact that both the DCB and
the FCB can be associated with a device specification (the FCB by the nature of a ROUTE
to a file). The TYPE byte uses each bit as a flag per the following specifications:

Bit 7 If set to a "1", it will indicate that the file is in an open condition; if
set to a "0", the file is assumed closed. This bit can be tested to
determine the "open" or "closed" status of an FCB and is used by the

6-14

operating system for such a purpose. The system's device I/O handler also
makes use of this bit to determine the necessity for disk file character
I/O.

Bit 6 This bit will be set to a "1" if the file was opened with UPDATE or greater
access. It indicates to the CLOSE routine that the application has the
authority to reset the "file open bit" in the directory entry record for the
respective file. The CLOSE routine will not update the directory entry of a
file without this bit being set in the FCB.

Bit 5 This bit indicates that the opened file is a Partitioned Data Set. The
system will set this bit when the file is opened if it detects the presence
of the PDS attribute in the directory entry of the file (DIR+0, bit 5).

Bit 4 This bit is reserved for future use by the DOS.

Bit 3 This bit is reserved for future use by the DOS.

Bit 2 This bit will be set to a "1" if any WRITE operation is performed by the
system on this file while it is open. The bit is used specifically to update
the MOD flag in the file's directory entry record when the file is closed.

Bit 1 This bit is reserved for future use by the DOS.

Bit 0 This bit is reserved for future use by the DOS.

6.4.2 Input/Output Status - <Byte 1>
This byte contains I/O buffer status flag bits used in read/write operations by the
system. The STATUS byte uses each bit as a flag per the following specifications:

Bit 7 If this bit is set to a "1", it indicates that I/O operations will be either
record operations of logical record length (LRL) less than 256 (1-255) or
character I/O. If set to a "0", only full sector operations or character I/O
will be performed. If you are going to utilize only full sector I/O, system
overhead is reduced by specifying the LRL at open time to be 0 (indicating
256). An LRL of other than 256 will set bit 7 to a "1" when the file is
first opened.

Bit 6 When a file's records have been accessed randomly rather than (or in
addition to) sequentially, the system must be prohibited from the altering
the Ending-Record-Number (ERN) unless the file is extended beyond its
current ERN. This bit is used for that status. If set to a "1", it indicates
that the ERN is to be set to the Next-Record-Number (NRN) only if the NRN
exceeds the current value of ERN. Whenever the position SVC (@POSN) is
invoked, it will automatically set bit 6. If bit 6 is set to a "0", then ERN
in the FCB will be updated on every WRITE operation.

Bit 5 It is always necessary for the system to know whether or not the file buffer
contains the current disk sector as specified by the NRN. This bit is
maintained for that use. If it is set to a "0", then the disk file buffer
contains the current sector denoted by NRN. If it is set to a "1", then the
file buffer does not contain the current sector. When a sector is read into
the disk buffer, the system will reset this bit to show that the buffer
currently holds the disk sector specified by the NRN. During character I/O,
the first character GET request will force the system to transfer a full
disk sector into the file buffer and reset the "buffer current" bit. Bit 5
is automatically set when the character in the last byte of the buffer has
been transferred to the application in the GET requests. This will then
indicate that the buffer is not current so that the next GET will force a
read of the next sector.

Bit 4 During file I/O, an application may request a repositioning of the file's
NRN-OFFSET pointer. This may be requested via an @BKSP, @POSN, @REWIND,

6-15

@SKIP, @PEOF, or @SEEKSC SuperVisor Call. It is important for the system to
know whether or not the disk file buffer has been changed since it was read
from the file. If the buffer has been altered, it is necessary to write the
buffer back to the file prior to any movement of the file pointer. This flag
conveys such status. If it is set to a "1", it indicates that the buffer
contents have been changed since the buffer was read from the file. If it is
set to a "0", the indication is that the buffer has not been modified. The
system will set this bit whenever a WRITE operation is performed on the
buffer by either a PUT or the write of a record (of LRL < 256). The bit is
reset by the system when the buffer is physically written to the disk via
the @WRSEC SuperVisor Call request.

Bit 3 The normal method to reflect changes in a file's directory entry record data
is to update the directory entry only when the file is closed. Thus, the FCB
contains all of the information pertinent to the modifications. This keeps
the directory accesses to a minimum and results in faster file throughput.
However, it is important to note that if the system crashes after extensive
file updating (specifically where the file has been extended), the added
information will be unrecoverable without manual corrections to the file's
directory entry record. It is possible to force the system to always update
the directory whenever the system extends the file by writing another
sector. Unattended operation may utilize this extra measure of file
protection. It is specified by appending an exclamation mark "!" to the end
of a file specification when the filespec is requested at open time. This
bit will then be set by the system. It is used to specify that the directory
record is to be updated every time that the NRN exceeds the ERN.

Bits 2-0 These bits will contain the access protection level as retrieved from the
directory entry record of the file when the file is first opened. The
specific bit pattern will be adjusted to the protection level granted
according to the password (OWNER vs USER) entered at file open time.

6.4.3 PDS Member Origin Offset - <Byte 2>
When a Partitioned Data Set (PDS) has been opened for individual member access (a sector
origin member), the PDS linkage routines will adjust the EOF contained in the FCB to be
the logical EOF of the member. The member origin offset is the number of relative sectors
between the logical ERN of the member and the first relative sector of the member. This
byte will contain that forward offset so that the linkage routines may be able to
calculate the logical beginning of the member. The calculation is required for linkage to
all SuperVisor Calls that reference file positioning forward of the NRN (@BKSP, @REWIND,
@POSN, @SEEKSC).

6.4.4 Disk File Buffer Pointer - <Bytes 3-4>
This is a pointer to the disk file buffer that is used for all disk I/O associated with
the file. The pointer is a 16-bit address stored in normal low-order - high-order format.
This pointer is the buffer address specified in register pair HL at open time.

6.4.5 Next Record Number Byte Offset - <Byte 5>
When a file is accessed with either character I/O or record I/O of Logical Record Length
less than 256, requests for I/O may not necessarily require the transfer of a physical
sector from/to the disk. Therefore, the system needs a pointer to the byte position
within the buffer that is to be used for the next I/O operation. This field contains that
position - it is termed an OFFSET within the sector pointed to by the NRN. If this offset
is a zero value, then the next byte to be transferred during an I/O operation is
dependent on whether or not the buffer contains the current sector as noted by FCB+1, bit
5. The system automatically maintains this OFFSET byte during record and character I/O.
If your application is performing full sector I/O for writing data while it is
maintaining its own character buffering, then it is important for it to maintain this
byte when the file is closed if the true end-of-file offset is not at a sector boundary.
Remember, this offset is a pointer to the next available buffer position and not to the

6-16

position where the last character is placed. For instance, after writing three bytes into
positions 0, 1, and 2 of the buffer, the offset must be incremented to "3" since the next
available buffer position is byte 3.

6.4.6 Logical Drive Number - <Byte 6>
This contains the logical drive number in binary of the drive containing the file. It is
absolutely essential that this byte be left undisturbed. It is used by the system's file
access routines to obtain the logical disk drive number that physical I/O is to
reference. It, and the Directory Entry Code contained in FCB+7 are the only links to the
directory information for the file. Since the operating system supports a maximmum of
eight logical drives, the logical drive number is contained in a 3-bit field. The
remaining bits are reserved for future use in large disk segmentation.

Bits 7-3 This field is reserved by the DOS for future use.

Bits 2-0 This field contains the logical drive number where the file is stored.

6.4.7 Directory Entry Code - <Byte 7>
This field contains the Directory Entry Code (DEC) which points to the file's primary
directory entry. This code is the relative position in the Hash Index Table where the
hash code for the file's directory entry appears. Whenever the system needs to access the
directory for the open file, it must use both this DEC and the logical DRIVE to uniquely
specify the proper directory record. Do not tamper with this byte. It may be interesting
to note that the device name, which uniquely identifies a device, and the DEC-DRIVE,
which uniquely identifies a file, are contained in the same fields of their respective
control blocks.

6.4.8 Ending Record Number Byte Offset - <Byte 8>
This field contains the byte offset in the Ending Record Number which points to one byte
past the end-of-file. This byte is similar to FCB+5 except it pertains to the ERN rather
than the NRN. If a file has been extended during the time it was open, then the NRN byte
offset and NRN become the new ERN byte offset and ERN when the file is closed.

6.4.9 Logical Record Length - <Byte 9>
This field contains the logical record length in effect when the file was opened. This
may not be the same LRL that exists in the directory. The directory LRL is generated at
the file creation and will never change unless another file is cloned to it.

6.4.10 Next Record Number <Bytes 10-11>
This field contains the Next-Record-Number (NRN), which is a pointer to the relative
sector for the next I/O operation. When a file is opened, NRN is set to zero indicating a
pointer to the beginning of the file. Each physical sector I/O advances NRN by one. An
@REWIND SuperVisor Call request will reset the NRN to zero.

6.4.11 Ending Record Number <Bytes 12-13>
This field is a pointer to the last sector of the file regardless of whether the sector
is a full sector (i.e. all bytes occupied and EOF-OFFSET has a zero value) or a partial
sector (i.e. EOF-OFFSET is not equal to zero). In a null file (one with no records), ERN
will be equal to zero. If one sector had been written, ERN would be equal to one.

6.4.12 Starting Extent - <Bytes 14-15>
This field contains the same information as the first extent of the directory. This
represents the starting cylinder of the file (FCB+14) and the starting relative granule
within the starting cylinder (FCB+15). FCB+15 also contains the number of contiguous
granules allocated in the extent. This can always be used as a pointer to the beginning
of the file referenced by the FCB. During any file access, this field will be searched
first to see if it contains the granule which stores the physical sector that is being
referenced.

6-17

6.4.13 Extent Quad 1 - <Bytes 16-19>
The QUAD is a 4-byte field that contains the granule allocation information for one
extent of the file as well as the total quantity of granules contained in the file
logically prior to this extent. Relative bytes zero and one contain the cumulative number
of granules allocated to the file up to but not including the extent referenced by this
field. This quantity is calculated by the system by adding up all the number of
contiguous granules allocated in previous extents. Relative byte two contains the
starting cylinder of this extent. Relative byte three contains the starting relative
granule for the extent and the number of contiguous granules. Relative bytes two and
three are obtained directly from an extent field of the directory entry record. Figure 6-
4 illustrates the Extent Quad.

6.4.14 Extent Quad 2 - <Bytes 20-23>
This field contains information similar to the first Extent Quad but for a second extent
of the file.

6.4.15 Extent Quad 3 - <Bytes 24-27>
This field contains information similar to the first Extent Quad but for a third extent
of the file.

6.4.16 Extent Quad 4 - <Bytes 28-31>
This field contains information similar to the first Extent Quad but for a forth extent
of the file.

... | | | |r g| | ...
... | # of contiguous |starting |e r|total| ...
... | granules up to |cylinder |l a|grans| ...
... | this extent | | n| | ...
 _|_________|_________|_________|___|_____|__

byte 0 byte 1 byte 2 byte 3

Figure 6-4 An FCB Extent Quad

The File Control Block contains information on only five extents at any one time - one of
which is always the first extent of the file (that which is placed into STARTING EXTENT.
When a file is first opened, data for the STARTING EXTENT is extracted from the first
extent of the file's primary directory entry record (the FPDE). If the file has more than
one extent, data for the EXTENT QUADS is calculated for each additional extent that
contains allocation information in the FPDE. This leaves, at a minimum, one EXTENT QUAD
vacant.

Each time a record is accessed, the system determines if the record is located in the
starting EXTENT. If not, then the system searches the extent QUADs. If the record is
located in one of the QUADS, then the data contained in all QUADS to the left of the
"desired" QUAD is shifted right by one QUAD and the data from the "desired" QUAD is
placed in the first extent QUAD field. This action is undertaken so that extent QUADs
that contain records recently accessed will be searched first. If a record in a file is
accessed which is not contained in any FCB extent QUAD field, then the DOS must access
the directory entries for the file and locate that extent which contains the needed
granule (and hence the needed record). Once the extent is located, the data in extent
QUAD fields 1-3 will be shifted to occupy fields 2-4 and the new data will be placed into
extent QUAD field 1. If the desired record cannot be located in any extent of the file,
the system will attempt to allocate additional space necessary to position the record.

Although the operating system can handle a file of any number of extents, it is wise to
keep the total number of extents small. If the file has more than five extents,
additional directory accessing must be done to locate the extent containing the desired

6-18

record. If a file has more than four extents, then it will occupy more than one directory
entry record and thereby reduce the number of file slots available. The most efficient
file is one with a single extent although the file can be at most 32 granules in size.
The number of extents can be reduced by copying the file to a diskette containing a great
deal of free space.

7-1

7. Interfacing via SuperVisor Calls
7.1 SUPERVISOR CALL LINKAGE
This chapter discusses specific linkage necessary to communicate with the operating
system for service requests at the assembly language level. Requests for system resources
are accomplished via SuperVisor Calls (SVCs). The following sections describe each SVC
and the register contents passed to and from the system.

The DOS does not affect the contents of the Z-80's alternate registers (AF', BC', DE',
and HL'). Where the DOS makes use of index registers IX and IY, it will save them prior
to their use and restore them when that use is completed. The exception, of course, is
where IX and/or IY are used to pass information to or from the DOS.

Each SVC specifies what registers are altered by the system. The AF register will always
be altered. Most SVCs incorporate return codes. Where applicable, the return code is
passed in the accumulator and the Z-flag status is indicative of an error or success [Z
= success, NZ = error]. Some SVCs use only the state of the Z-flag to indicate a
pass/fail situation. The return code convention is specified under the linkage shown for
each SVC.

SuperVisor Calls utilize a number from 0 to 127. Numbers from 128 to 255 are not
interpreted as SVCs but are used internally by the DOS for other system overlay
invocations. The SVC number is placed in the accumulator once the registers particular to
the SVC are set up and control is passed to the operating system by issuing a RST 40 (RST
28H) Z-80 instruction.

7.1.1 Adding or Changing SVC Entries
Some programmers may find it useful to alter the performance of existing SuperVisor Calls
to suit unique situations. A program may even be written that could utilize additional
SVCs. Four SVC slots [numbers 124-127] have been provided for application programs. An
examination of the following SVC tables will reveal a good handful of SVC numbers that
have not yet been assigned by Logical Systems. Caution is to be observed in utilizing any
of these reserved slots since you may find your program unusable with a future release of
the operating system. [Remember that four RST instructions: RST 8, RST 16, RST 24, and
RST 32 are available for use by application software.]

In any event, be it modification of the vector for an existing SVC or the addition of
your own into a "user" SVC, the interface is simple. The SVC table is always (and will
always) be origined at the start of a RAM page. The page address (i.e. the high-order
byte of the SVC table) can be obtained from the system via the FLAGS pointer returned by
the @FLAGS SVC. Since the low order byte starts out with 0 for SVC-00, you can locate the
exact address for the SVC vector by multiplying the SVC number by two, loading the result
into the low order byte of a register pair (say L), then loading the high order byte of
that register pair (say H) with the SVC table base address (FLAGS$+26). This will then
index the low order byte of the SVC vector. The SVC vectors are stored in standard low-
high order.

7.2 PROGRAM ENTRY AND EXIT CONDITIONS
When the operating system executes a program either from DOS Ready or via an SVC (@CMNDI ,
@CMNDR, or @RUN), certain conditions prevail. These conditions relate to the register
contents and the stack location. The useful register contents are as follows:

BC Contains a pointer to the start of the command line. This is useful for
those applications desiring to know what program name caused their
invocation (as in the command-line arguments applicable to C programs).

7-2

DE Contains a pointer to the File Control Block used to open the program file
being run. This may prove useful to access the program file as data since
the file is already in an open condition (the PRO-PaDS utility from MISOSYS
makes use of this condition).

HL Contains a pointer to the first non-blank character on the command line
which terminated the parsing of the name entered in order to execute the
program. This pointer should be used if you are going to parse command-line
file specifications using @FSPEC or parameters via @PARAM.

If the program was executed from DOS Ready or via @CMNDI, the stack pointer (SP) will
point to the system stack which has approximately 150 bytes of storage space. If the
program was executed via @RUN or @CMNDR, then the stack pointer contains whatever was
established by the invoking program. In any event, the top of the stack will contain the
return address to the module which is invoking the program, be it another program or the
system.

If you are going to switch stacks, you should be aware that the system's task processor
requires possibly 40 bytes of stack space. The exact amount will depend on what tasks are
active. Release 6.0.0 of the DOS also has a restriction that limits the stack to reside
below X'F400'. If you are going to use the @BANK request to toggle memory banks, then the
stack must reside below X'7FFE'.

When your program terminates, it should load register pair HL with a return code. If the
program terminates without error, use a return code of 0. If the termination is due to a
DOS I/O error or other error being returned by an SVC as noted in the error dictionary,
load that error number into HL. For all other error conditions, the suggested procedure
is to load a -1 (X'FFFF') into register pair HL. After loading HL, you can either issue a
RET instruction or issue an @EXIT SuperVisor Call. Note that the RET exit method mandates
that you maintain the integrity of the stack pointer so that it is pointing to a valid
return address. You may want to establish exit code that reloads the stack pointer with
the SP contents that you saved when first executing the program. Thus, the SP will always
be correct for an RET. An @EXIT termination will always restore control to the operating
system even if the program was invoked via an @CMNDR. Therefore, if you suspect that your
program will be invokable from another program, you should use the RET method for program
termination.

7.3 SUPERVISOR CALLS LISTED ALPHABETICALLY
Name Svc # Purpose
@ABORT SVC-21 Abnormal program exit
@ADTSK SVC-29 Add a task process
@BANK SVC-102 RAM bank switching
@BKSP SVC-61 File record backspace
@BREAK SVC-103 Establish <BREAK> vector
@CHNIO SVC-20 Device chain character I/O
@CKBRKC SVC-106 Check for a keyboard BREAK
@CKDRV SVC-33 Check disk drive availability (& log)
@CKEOF SVC-62 Check for file's end-of-file (EOF)
@CKTSK SVC-28 Check task slot availability
@CLOSE SVC-60 Close an open disk file
@CLS SVC-105 Clear the Video screen
@CMNDI SVC-24 Interpret and execute a command
@CMNDR SVC-25 Execute a command and return
@CTL SVC-05 Control a device chain
@DATE SVC-18 Obtain system date
@DCINIT SVC-42 Initialize a disk controller

7-3

@DCRES SVC-43 Reset a disk controller
@DCSTAT SVC-40 Test disk controller status
@DEBUG SVC-27 Enter system DEBUG package
@DECHEX SVC-96 Convert decimal string to binary
@DIRRD SVC-87 Read a DEC's directory record
@DIRWR SVC-88 Write a DEC's directory record
@DIV16 SVC-94 16-bit by 8-bit unsigned division
@DIV8 SVC-93 8-bit by 8-bit unsigned division
@DODIR SVC-34 Obtain or display directory data
@DSP SVC-02 Character output to *DO (video display)
@DSPLY SVC-10 Line output to *DO (video display)
@ERROR SVC-26 Post an error message
@EXIT SVC-22 Exit program with return code
@FEXT SVC-79 Fetch a default file extension
@FLAGS$ SVC-101 Obtain system flags pointer
@FNAME SVC-80 Obtain filespec given DEC and drive
@FSPEC SVC-78 Fetch and parse a file specification
@GET SVC-03 Character input from a device/file
@GTDCB SVC-82 Obtain DCB pointer given devspec
@GTDCT SVC-81 Obtain DCT pointer given drive
@GTMOD SVC-83 Obtain entry point given module name
@HDFMT SVC-52 Pass "format device" to controller
@HEX16 SVC-99 Convert 16-bit binary to ASCII hex
@HEX8 SVC-98 Convert 8-bit binary to ASCII hex
@HEXDEC SVC-97 Convert 16-bit binary to ASCII decimal
@HIGH$ SVC-100 Obtain or alter HIGH$/LOW$
@INIT SVC-58 Open a new or existing file
@IPL SVC-00 Reboot the system
@KBD SVC-08 Scan the *KI device
@KEY SVC-01 Obtain a character from the *KI device
@KEYIN SVC-09 Obtain a line of characters from *KI (or JCL)
@KLTSK SVC-32 Remove task assignment during execution
@LOAD SVC-76 Load a program file
@LOC SVC-63 Return file's current record number
@LOF SVC-64 Return file's ending record number
@LOGER SVC-11 Send a message to the Job Log (*JL)
@LOGOT SVC-12 Display and log a message (*DO and *JL)
@MSG SVC-13 Send a message line to a device
@MUL16 SVC-91 16-bit by 8-bit into 24-bit multiplication
@MUL8 SVC-90 8-bit by 8-bit into 8-bit multiplication
@OPEN SVC-59 Open an existing file
@PARAM SVC-17 Parse a command line of parameters
@PAUSE SVC-16 Delay execution for a time period
@PEOF SVC-65 Position to the end of a file
@POSN SVC-66 Position to a designated record of a file
@PRINT SVC-14 Send a message line to *PR device
@PRT SVC-06 Send a character to *PR device
@PUT SVC-04 Send a character to a device/file
@RAMDIR SVC-35 Obtain directory information
@RDHDR SVC-48 Read ID field (where supported)
@RDSEC SVC-49 Read a disk sector
@RDSSC SVC-85 Read a disk's directory sector
@RDTRK SVC-51 Read a disk track (where supported)
@READ SVC-67 Read a file record
@REMOV SVC-57 Remove a file from disk

7-4

@RENAM SVC-56 Rename a file on disk
@REW SVC-68 Rewind a file to its beginning
@RMTSK SVC-30 Remove a task assignment
@RPTSK SVC-31 Replace a task assignment during execution
@RREAD SVC-69 Reread the last sector read
@RSLCT SVC-47 Reselect a busy drive until available
@RSTOR SVC-44 Restore a drive to cylinder 0
@RUN SVC-77 Run a program given its filespec
@RWRIT SVC-70 Rewrite the last sector written
@SEEK SVC-46 Seek to a disk cylinder
@SEEKSC SVC-71 Seek a record of a file
@SKIP SVC-72 Skip the next record of a file
@SLCT SVC-41 Select a disk drive
@SOUND SVC-104 Activate hardware sound generation
@STEPI SVC-45 Issue track step-in to controller
@TIME SVC-19 Obtain the system time
@VDCTL SVC-15 Various video control functions
@VER SVC-73 Write then verify a file record
@VRSEC SVC-50 Verify the readability of a disk sector
@WEOF SVC-74 Directory update a file's end-of-file
@WHERE SVC-07 Resolve run-time address
@WRITE SVC-75 Write a file record
@WRSEC SVC-53 Write a disk sector
@WRSSC SVC-54 Write a disk directory sector
@WRTRK SVC-55 Write a disk track (format data)

7.4 SUPERVISOR CALLS LISTED NUMERICALLY
Name Svc # Purpose
@IPL SVC-00 Reboot the system
@KEY SVC-01 Obtain a character from the *KI device
@DSP SVC-02 Character output to *DO (video display)
@GET SVC-03 Character input from a device/file
@PUT SVC-04 Send a character to a device/file
@CTL SVC-05 Control a device chain
@PRT SVC-06 Send a character to *PR device
@WHERE SVC-07 Resolve run-time address
@KBD SVC-08 Scan the *KI device
@KEYIN SVC-09 Obtain a line of characters from *KI (or JCL)
@DSPLY SVC-10 Line output to *DO (video display)
@LOGER SVC-11 Send a message to the Job Log (*JL)
@LOGOT SVC-12 Display and log a message (*DO and *JL)
@MSG SVC-13 Send a message line to a device
@PRINT SVC-14 Send a message line to *PR device
@VDCTL SVC-15 Various video control functions
@PAUSE SVC-16 Delay execution for a time period
@PARAM SVC-17 Parse a command line of parameters
@DATE SVC-18 Obtain system date
@TIME SVC-19 Obtain the system time
@CHNIO SVC-20 Device chain character I/O
@ABORT SVC-21 Abnormal program exit
@EXIT SVC-22 Exit program with return code
rsvd SVC-23 reserved
@CMNDI SVC-24 Interpret and execute a command

7-5

@CMNDR SVC-25 Execute a command and return
@ERROR SVC-26 Post an error message
@DEBUG SVC-27 Enter system DEBUG package
@CKTSK SVC-28 Check task slot availability
@ADTSK SVC-29 Add a task process
@RMTSK SVC-30 Remove a task assignment
@RPTSK SVC-31 Replace a task assignment during execution
@KLTSK SVC-32 Remove task assignment during execution
@CKDRV SVC-33 Check disk drive availability (& log)
@DODIR SVC-34 Obtain or display directory data
@RAMDIR SVC-35 Obtain directory information
rsvd SVC-36 reserved
rsvd SVC-37 reserved
rsvd SVC-38 reserved
rsvd SVC-39 reserved
@DCSTAT SVC-40 Test disk controller status
@SLCT SVC-41 Select a disk drive
@DCINIT SVC-42 Initialize a disk controller
@DCRES SVC-43 Reset a disk controller
@RSTOR SVC-44 Restore a drive to cylinder 0
@STEPI SVC-45 Issue track step-in to controller
@SEEK SVC-46 Seek to a disk cylinder
@RSLCT SVC-47 Reselect a busy drive until available
@RDHDR SVC-48 Read ID field (where supported)
@RDSEC SVC-49 Read a disk sector
@VRSEC SVC-50 Verify the readability of a disk sector
@RDTRK SVC-51 Read a disk track (where supported)
@HDFMT SVC-52 Pass "format device" to controller
@WRSEC SVC-53 Write a disk sector
@WRSSC SVC-54 Write a disk directory sector
@WRTRK SVC-55 Write a disk track (format data)
@RENAM SVC-56 Rename a file on disk
@REMOV SVC-57 Remove a file from disk
@INIT SVC-58 Open a new or existing file
@OPEN SVC-59 Open an existing file
@CLOSE SVC-60 Close an open disk file
@BKSP SVC-61 File record backspace
@CKEOF SVC-62 Check for file's end-of-file (EOF)
@LOC SVC-63 Return file's current record number
@LOF SVC-64 Return file's ending record number
@PEOF SVC-65 Position to the end of a file
@POSN SVC-66 Position to a designated record of a file
@READ SVC-67 Read a file record
@REW SVC-68 Rewind a file to its beginning
@RREAD SVC-69 Reread the last sector read
@RWRIT SVC-70 Rewrite the last sector written
@SEEKSC SVC-71 Seek a record of a file
@SKIP SVC-72 Skip the next record of a file
@VER SVC-73 Write then verify a file record
@WEOF SVC-74 Directory update a file's end-of-file
@WRITE SVC-75 Write a file record
@LOAD SVC-76 Load a program file
@RUN SVC-77 Run a program given its filespec
@FSPEC SVC-78 Fetch and parse a file specification
@FEXT SVC-79 Fetch a default file extension

7-6

@FNAME SVC-80 Obtain filespec given DEC and drive
@GTDCT SVC-81 Obtain DCT pointer given drive
@GTDCB SVC-82 Obtain DCB pointer given devspec
@GTMOD SVC-83 Obtain entry point given module name
rsvd SVC-84 reserved
@RDSSC SVC-85 Read a disk's directory sector
rsvd SVC-86 reserved
@DIRRD SVC-87 Read a DEC's directory record
@DIRWR SVC-88 Write a DEC's directory record
rsvd SVC-89 reserved
@MUL8 SVC-90 8-bit by 8-bit into 8-bit multiplication
@MUL16 SVC-91 16-bit by 8-bit into 24-bit multiplication
rsvd SVC-92 reserved
@DIV8 SVC-93 8-bit by 8-bit unsigned division
@DIV16 SVC-94 16-bit by 8-bit unsigned division
rsvd SVC-95 reserved
@DECHEX SVC-96 Convert decimal string to binary
@HEXDEC SVC-97 Convert 16-bit binary to ASCII decimal
@HEX8 SVC-98 Convert 8-bit binary to ASCII hex
@HEX16 SVC-99 Convert 16-bit binary to ASCII hex
@HIGH$ SVC-100 Obtain or alter HIGH$/LOW$
@FLAGS$ SVC-101 Obtain system flags pointer
@BANK SVC-102 RAM bank switching
@BREAK SVC-103 Establish <BREAK> vector
@SOUND SVC-104 Activate hardware sound generation
@CLS SVC-105 Check for keyboard BREAK
@CKBRKC SVC-106 Clear the Video screen
rsvd SVC-107 reserved
rsvd SVC-108 reserved
rsvd SVC-109 reserved
rsvd SVC-110 reserved
rsvd SVC-111 reserved
rsvd SVC-112 reserved
rsvd SVC-113 reserved
rsvd SVC-114 reserved
rsvd SVC-115 reserved
rsvd SVC-116 reserved
rsvd SVC-117 reserved
rsvd SVC-118 reserved
rsvd SVC-119 reserved
rsvd SVC-120 reserved for ARCNET use
rsvd SVC-121 reserved for ARCNET use
rsvd SVC-122 reserved for ARCNET use
rsvd SVC-123 reserved for ARCNET use
rsvd SVC-124 Available for user programs
rsvd SVC-125 Available for user programs
rsvd SVC-126 Available for user programs
rsvd SVC-127 Available for user programs

7-7

7.5 SUPERVISOR CALLS LISTED BY FUNCTION GROUP
7.5.1 Character I/O

Name Svc # Purpose
@KEY SVC-01 Obtain a character from the *KI device
@DSP SVC-02 Character output to *DO (video display)
@GET SVC-03 Character input from a device/file
@PUT SVC-04 Send a character to a device/file
@CTL SVC-05 Control a device chain
@PRT SVC-06 Send a character to *PR device
@KBD SVC-08 Scan the *KI device
@VDCTL SVC-15 Peek/Poke video by row,column
@CHNIO SVC-20 Device chain character I/O

7.5.2 Line I/O

Name Svc # Purpose
@KEYIN SVC-09 Obtain a line of characters from *KI (or JCL)
@DSPLY SVC-10 Line output to *DO (video display)
@LOGER SVC-11 Send a message to the Job Log (*JL)
@LOGOT SVC-12 Display and log a message (*DO and *JL)
@MSG SVC-13 Send a message line to a device
@PRINT SVC-14 Send a message line to *PR device
@VDCTL SVC-15 Video RAM <-> User RAM

7.5.3 Data Conversion

Name Svc # Purpose
@PARAM SVC-17 Parse a command line of parameters
@MUL8 SVC-90 8-bit by 8-bit into 8-bit multiplication
@MUL16 SVC-91 16-bit by 8-bit into 24-bit multiplication
@DIV8 SVC-93 8-bit by 8-bit unsigned division
@DIV16 SVC-94 16-bit by 8-bit unsigned division
@DECHEX SVC-96 Convert decimal string to binary
@HEXDEC SVC-97 Convert 16-bit binary to ASCII decimal
@HEX8 SVC-98 Convert 8-bit binary to ASCII hex
@HEX16 SVC-99 Convert 16-bit binary to ASCII hex

7.5.4 Disk Controller Communications

Name Svc # Purpose
@DCSTAT SVC-40 Test disk controller status
@SLCT SVC-41 Select a disk drive
@DCINIT SVC-42 Initialize a disk controller
@DCRES SVC-43 Reset a disk controller
@RSTOR SVC-44 Restore a drive to cylinder 0
@STEPI SVC-45 Issue track step-in to controller
@SEEK SVC-46 Seek to a disk cylinder
@RSLCT SVC-47 Reselect a busy drive until available
@RDHDR SVC-48 Read ID field (where supported)
@RDSEC SVC-49 Read a disk sector
@VRSEC SVC-50 Verify the readability of a disk sector
@RDTRK SVC-51 Read a disk track (where supported)
@HDFMT SVC-52 Pass "format device" to controller

7-8

@WRSEC SVC-53 Write a disk sector
@WRSSC SVC-54 Write a disk directory sector
@WRTRK SVC-55 Write a disk track (format data)

7.5.5 File Access

Name Svc # Purpose
@GET SVC-03 Character input from a device/file
@PUT SVC-04 Send a character to a device/file
@BKSP SVC-61 File record backspace
@CKEOF SVC-62 Check for file's end-of-file (EOF)
@LOC SVC-63 Return file's current record number
@LOF SVC-64 Return file's ending record number
@PEOF SVC-65 Position to the end of a file
@POSN SVC-66 Position to a designated record of a file
@READ SVC-67 Read a file record
@REW SVC-68 Rewind a file to its beginning
@RREAD SVC-69 Reread the last sector read
@RWRIT SVC-70 Rewrite the last sector written
@SEEKSC SVC-71 Seek a record of a file
@SKIP SVC-72 Skip the next record of a file
@VER SVC-73 Write then verify a file record
@WEOF SVC-74 Directory update a file's end-of-file
@WRITE SVC-75 Write a file record

7.5.6 File Control

Name Svc # Purpose
@RENAM SVC-56 Rename a file on disk
@REMOV SVC-57 Remove a file from disk
@INIT SVC-58 Open a new or existing file
@OPEN SVC-59 Open an existing file
@CLOSE SVC-60 Close an open disk file
@LOAD SVC-76 Load a program file
@RUN SVC-77 Run a program given its filespec
@FSPEC SVC-78 Fetch and parse a file specification
@FEXT SVC-79 Fetch a default file extension
@FNAME SVC-80 Obtain filespec given DEC and drive

7.5.7 System Control

Name Svc # Purpose
@IPL SVC-00 Reboot the system
@VDCTL SVC-15 Various video control functions
@PAUSE SVC-16 Delay execution for a time period
@ABORT SVC-21 Abnormal program exit
@EXIT SVC-22 Exit program with return code
@CMNDI SVC-24 Interpret and execute a command
@CMNDR SVC-25 Execute a command and return
@ERROR SVC-26 Post an error message
@DEBUG SVC-27 Enter system DEBUG package
@HIGH$ SVC-100 Obtain or alter HIGH$/LOW$
@FLAGS$ SVC-101 Obtain system flags pointer
@BANK SVC-102 RAM bank switching
@BREAK SVC-103 Establish <BREAK> vector

7-9

@CKBRKC SVC-106 Check for keyboard BREAK
@CLS SVC-105 Clear the Video screen

7.5.8 System Data

Name Svc # Purpose
@VDCTL SVC-15 Obtain the video cursor position
@DATE SVC-18 Obtain system date
@TIME SVC-19 Obtain the system time
@CKDRV SVC-33 Check disk drive availability (& log)
@DODIR SVC-34 Obtain or display directory data
@RAMDIR SVC-35 Obtain directory information
@GTDCT SVC-81 Obtain DCT pointer given drive
@GTDCB SVC-82 Obtain DCB pointer given devspec
@GTMOD SVC-83 Obtain entry point given module name
@RDSSC SVC-85 Read a disk's directory sector
@DIRRD SVC-87 Read a DEC's directory record
@DIRWR SVC-88 Write a DEC's directory record
@HIGH$ SVC-100 Obtain or alter HIGH$/LOW$
@FLAGS$ SVC-101 Obtain system flags pointer

7.5.9 Task Process Control

Name Svc # Purpose
@CKTSK SVC-28 Check task slot availability
@ADTSK SVC-29 Add a task process
@RMTSK SVC-30 Remove a task assignment
@RPTSK SVC-31 Replace a task assignment during execution
@KLTSK SVC-32 Remove task assignment during execution

7.5.10 Miscellaneous

Name Svc # Purpose
@WHERE SVC-07 Resolve run-time address
@PARAM SVC-17 Parse a command line of parameters

7-10

7.6 SUPERVISOR CALL DETAILS
7.6.1 @ABORT SVC-21
This SVC will cause an abnormal program exit and return to DOS. Any JCL execution in
progress will cease. @ABORT functions by loading the HL register pair with a value of
X'FFFF' and passing control to @EXIT.

Registers Affected: Not applicable.

7.6.2 @ADTSK SVC-29
This SVC will add an interrupt level task pointed to by your Task Control Block (TCB) to
the real time clock task processor Task Control Block Vector Table. The task slot can be
0-11; however, some slots are already assigned to certain functions in the DOS. The SVC,
@CKTSK, can be used to test for slot availability. Slot assignments 0-7 are low priority
tasks, slots 8-10 are medium priority tasks, and slot 11 is a high priority task. Note:
The TCB is a pointer to a word of RAM containing the address of the task driver entry
point and not to the location of your task driver. Detailed interfacing on background
tasks is in Chapter 8, the Appendix, on TASK PROCESSOR.

Registers Affected: AF, HL.

Entry
DE Pointer to your Task Control Block (TCB).
C Contains the task slot assignment number.

7.6.3 @BANK SVC-102
This SVC deals with memory bank use. The top half of the first 64K block is bank 0, and
the second 64K is banks 1 and 2. DOS supports a total of 8 memory banks of 32K each
(numbered 0-7). See Chapter 8, the Appendix, on BANK SWITCHING for programming details
and illustrations. Internally, the DOS makes use of three storage bytes: the BAR contains
the bit-image of Bank Available RAM; the BUR contains the bit-image of Bank Used RAM; and
LBANK$ contains the number (0-7) of the currently resident bank. These storage areas are
not directly accessible to the programmer but are referenced through the SVC functions.
In the interfacing register protocol identified below, register-B passes a function code.

Registers Affected: AF, BC, [HL if a transfer is requested].

Bank Request [optional transfer]

Entry:
B 0
C Bank number (0-7). Optionally set bit-7 to transfer to the address specified

in register pair HL.
HL Optional address to transfer to in the new bank. This option is selected by

setting bit-7 of register-C.

Exit:
B Returns a 0.
C Returns the previously resident bank number (0-7). If a transfer has be en

specified (via bit-7 set), bit-7 will remain set.
A Returns any error code if NZ condition.
NZ Bank not there.

Bank Release

Entry:
B 1; Reset bank in C.
C Bank number.

7-11

Bank Availability Test

Entry:
B 2; Test if bank C in use.
C Bank number.

Exit:
NZ In use.

Bank Reservation Request

Entry:
B 3; Set bank in C.
C Bank number.

Exit:
NZ Already in use.

What Bank is Resident

Entry:
B 4; Return current installed bank.

Exit:
A Returns the bank number (0-7) of the currrently resident bank.

Note: The coding of the @BANK routine will not return an error if you try to reset
a Bank Used RAM (BUR) that is "in-use" because it is not installed. The way
in which bank-reset should be performed is to know which one you were using
and made in-use. Note that even though @BANK permits you to reset a non-
existant bank, if you try to enable it, you will get an error since the
enabling routine will not permit the selection of a bank not installed.

7.6.4 @BKSP SVC-61
This SVC will perform a backspace of one logical record in the referenced file.

Registers Affected: AF.

Entry:
DE A pointer to the FCB of the file to backspace.

Exit:
A Error return code.
Z Set if the operation was successful.

7.6.5 @BREAK SVC-103
This SVC is used to establish or reset a <BREAK> key vector. The <BREAK> condition is
observed as a background interrupt task. Once activated, a <BREAK> will pass control to
your vectored routine providing the current program counter is above the resident DOS and
below HIGH$.

Registers Affected: AF.

Entry:
HL Address of your break vector.
HL X'0000' to restore to system break handler.

7-12

Note: @EXIT in SYS1 automatically restores BREAK to the system handler. This is
not done for @CMNDR. Also, don't forget that if DEBUG is enabled, then entry to
DEBUG takes precedence over the BREAK (of course, even though DEBUG has been
enabled, if you only have EXEC access, DEBUG is effectively disabled).

Your break handling routine will need to debounce the BREAK key and obviously deal
with the stack pointer (since the stack could be anywhere depending on when and
where the break was detected). Something of the following is suitable:

ENTRY LD (STKSAV),SP ;Save the stack pointer
 PUSH HL
 LD HL,MYBRK ;Point to your BREAK handler
 @@BREAK ;Set up "MYBRK" as break entry
 .
 .
MYBRK DI ;Don't permit further BREAKs
 LD B,80H ;Wait for fingers to get off
 @@PAUSE ; of the BREAK key
 LD SP,$-$;P/u the orig stack pointer
STKSAV EQU $-2
 EI ;Interrupts back on
 what ever you want
 RET ;To what invoked the program

7.6.6 @CHNIO SVC-20
This SVC is used to pass control to the next module in a device chain. Its use is
restricted to device filters. Detailed information on the use of @CHNIO will be found in
chapter 3, DEVICE INPUT/OUTPUT INTERFACING.

Registers Affected: Depends on the filter modules chained.

Entry:
IX Contains a pointer to the Device Control Block assigned to the filter

module. This is recovered from the MODDCB field located in the module
header. Note: IX should be saved before loading and restored upon return
from @CHNIO.

B Contains the I/O direction code (GET=1, PUT=2, CTL=4).
C Contains the output character for PUT or GET.

7.6.7 @CKBRKC SVC-106
This SVC was installed effective release 6.2.0. It checks to see if the BREAK key has
been pressed. It also clears the BREAK bit of the KFLAG$ if a break condition is
detected.

Registers Affected: AF.

Exit:
Z BREAK was not detected.
NZ BREAK was detected. SVC returns only when BREAK is released.

7-13

7.6.8 @CKDRV SVC-33
This routine will check a drive reference to ensure that the drive is in the system and a
formatted diskette is in place. It will also "log" the disk as far as density, number of
sides, and directory cylinder so that the Drive Control Table information is correct.

Registers Affected: AF.

Entry:
C Logical drive number

Exit:
Z If drive is ready.
NZ If drive is not ready
A Indeterminate and irrelevant.
CF Set if disk is write protected.

@CKEOF SVC-62

This SVC will check for the end-of-file at the current logical record number.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to check.

Exit:
A Error return code. If not X'1C', then some other error has been encountered.

It is necessary to get NZ and A=X'1C' for the proper EOF indication.
Z Set if not at the end of file and no error is encountered.

7.6.9 @CKTSK SVC-28
This SVC will check if the referenced task slot (0-11) is available for use. See Chapter
8, the Appendix, on TASK PROCESSOR for further details.

Registers Affected: AF, HL.

Entry:

C => The task slot number (0-11).

Exit:
Z Indicates that the task slot is available.
NZ Indicates that the task slot is in use.

7-14

7.6.10 @CLOSE SVC-60
This SVC will close a file or device. If a file is closed, the directory is updated which
is essential. All files that have been opened with UPDATE access or greater must be
closed.

Registers Affected: AF.

Entry:
DE A pointer to your File or Device Control Block.

Exit:
A Will contain any error return code.
Z Set if no error was encountered.

7.6.11 @CLS SVC-105
This SVC was installed in release 6.2.0. It will clear the video screen via an @DSP of
HOME and CLEAR-TO-END-OF-FRAME.

Registers Affected: AF

Exit:
Z Set if no error was encountered, otherwise reset (i.e. NZ).
A Contains the error code under an NZ condition.

7.6.12 @CMNDI SVC-24
This SVC passes control to the command interpreter. Your command string will be invoked
just as if it was entered in response to a "DOS Ready".

Registers Affected: Not applicable..

Entry:
HL A pointer to the start of a line buffer containing your command string

terminated with an <ENTER> (X'0D'). Only the first 79 characters of your
command string will be used.

7.6.13 @CMNDR SVC-25
This SVC will execute a command similarly to @CMNDI; however, upon completion of the
command, control will be returned to the address following the @CMNDR invocation. It is
necessary for all executing commands to maintain the stack pointer and exit via an RET
instruction after loading HL with the return code. It is possible to limit the execution
to DOS LIBrary commands by setting bit-4 of the CFLAG$ (see @FLAGS SVC).

Registers Affected: Dependent on command executed.

Entry:
HL A pointer to the start of a line buffer containing your com mand string

terminated with an <ENTER> (X'0D'). Only the first 79 characters of your
command string will be used.

Exit:
HL Will contain the return code of the executing command.

7.6.14 @CTL SVC-05
This SVC will output a control byte to a logical device. If a device control block is
referenced, the TYPE byte must permit CTL operation. The file access routines will ignore
@CTL requests and provide a "no error" return code. Control protocol is very unique to
each device. See chapter 3, DEVICE INPUT/OUTPUT INTERFACING, for additional information.

7-15

Registers Affected: AF.

Entry:
DE A pointer to the DCB or FCB to control output.
C Byte to output.

7.6.15 @DATE SVC-18
Get today's date in display format (XX/XX/XX). The SVC can also be used to obtain the
address of the binary storage for the system date. This may be useful for hardware clock
add-ons.

Registers Affected: AF, BC, DE.

Entry:
HL Buffer area to receive date string.

Exit:
DE Returns a pointer to the 5-byte binary date storage:

DATE+0 = year in excess 1900;
DATE+1 = day (1-31);
DATE+2 = month (1-12);
DATE+3 = bits 0-7 of the year's day;
DATE+4 = holds bit-8 of the year's day in bit-0, the day of the week (1-7)
in bits 1-3, and bit-7 is set for a leap year.

7.6.16 @DCINIT SVC-42
This SVC passes a function 2 to a disk driver. It is commonly used for disk controller
initializing. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).

Exit:
A Error return code, if any.
Z Set if the operation was successful.

7.6.17 @DCRES SVC-43
This SVC passes a function 3 to a disk driver. It is commonly used for disk controller
resetting. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).

Exit:
A Error return code, if any.
Z Set if the operation was successful.

7-16

7.6.18 @DCSTAT SVC-40
This SVC passes a function 0 to a disk driver. It is commonly used for testing the status
of a logical drive. A disk driver should return with no error on function 0. Thus, if a
particular drive is disabled, the system will return an error-32 to the calling program.
Chapter 4 has more information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).

Exit:
A Error return code, if any.
Z Set if the operation was successful.

7.6.19 @DEBUG SVC-27
This SVC will force the system to enter the DEBUGging package.

Registers Affected: None except those changed by the user.

7.6.20 @DECHEX SVC-96
This SVC performs the conversion of a decimal string of digits <0-9> to their binary
value in a 16-bit field. Overflow is not trapped. The conversion stops on the first digit
found not to be in the range <0-9>. The linkage is:

Registers Affected: AF, BC, HL.

Entry:
HL => A pointer to your decimal string.

Exit:
BC Returns the resultant 16-bit binary value of "string".
HL Points to 1st non-decimal digit.
Z-flag is indeterminate

7.6.21 @DIRRD SVC-87
This SVC will read a directory sector containing the directory entry for a specified
Directory Entry Code (DEC). The sector will be written to the system buffer, SBUFF$, and
the register pair HL will point to the first byte of the directory entry specified by the
DEC. Note that this is a method to recover the page address of the system's buffer by
keeping register-H after an @DIRRD invocation. See the sections on HASH INDEX TABLE and
DIRECTORY RECORD FORMAT for additional information.

Registers Affected: AF, HL.

Entry:
B Directory Entry Code of the file.
C Logical drive number (0-7).

Exit:
HL Points to the DEC's directory entry.
A Error return code, if any.
Z Set if no error is encountered.

7-17

7.6.22 @DIRWR SVC-88
This SVC will write the system buffer, SBUFF$, back to the disk directory sector that
contains the directory entry of the DEC specified in the calling linkage. See the
sections on HASH INDEX TABLE and DIRECTORY RECORD FORMAT for additional information.

Registers Affected: AF, HL.

Entry:
B Directory Entry Code of the file.
C Logical drive number (0-7).

Exit:
A Error return code, if any.
Z set if no error.

7.6.23 @DIV16 SVC-94
This SVC will perform a division of a 16-bit unsigned integer by an 8-bit unsigned
integer.

Registers Affected: AF, HL.

Entry:
HL Should contain the dividend value.
C Should contain the divisor value.

Exit:
HL Returns the resultant value.
A Returns the remainder value.

7.6.24 @DIV8 SVC-93
This SVC performs an 8-bit unsigned integer divide.

Registers Affected: AF, E.

Entry:
E Should contain the dividend value.
C Should contain the divisor value.

Exit:
A Returns the resultant value.
E Returns the remainder value.

7.6.25 @DODIR SVC-34
This SVC will capture selected directory information for the logical drive referenced in
the SVC's invocation and either pass the information to your designated buffer or display
formatted information on the *DO device. A function number is passed in register B to
control the desired output.

Registers Affected: AF.

Display Filespecs

Entry:
B 0; Function to display the directory of visible files to *DO.
C The logical drive number (0-7) of the selection.

7-18

Directory to Buffer

Entry:
B 1; Function to stuff your buffer with directory information.
C The logical drive number (0-7) of the selection.
HL A pointer to your buffer. The data returned by @DODIR is the first 16-bytes

of each directory record followed by the ERN. The buffer will be terminated
by an X'FF'.

Display Filespecs Matching EXT

Entry:
B 2; Function to display the directory of visible files to *DO. The display is

limited to files matching the given extension.
C The logical drive number (0-7) of the selection.
HL A pointer to a 3-character file extension. The use of a dollar sign in any

position represents a global match.

Directory Matching EXT to Buffer

Entry:
B 3; Function to stuff your buffer with directory information. The data is

limited to files matching the given extension.
C The logical drive number (0-7) of the selection.
HL A pointer to your buffer. This pointer is also interpreted to be a pointer

to a 3-character file extension. The use of a dollar sign in any position
represents a global match. Note that this function implies that the start of
your buffer is stuffed with the file extension to be matched.

Obtain Free Space

Entry:
B 4; Function to stuff your buffer with free space information. The

information passed will be DISK NAME and DISK DATE in positions 1-16; total
space on the disk (in K) in positions 17-18; and FREE SPACE available (in K)
in positions 19-20.

C The logical drive number (0-7) of the selection.
HL A pointer to your buffer.

7.6.26 @DSP SVC-02
This SVC will output a byte to the video display devspec *DO.

Registers Affected: AF, DE.

Entry:
C Byte to display

Exit:
Z Set if no error was encountered, otherwise reset (i.e. NZ).
A Contains the error code under an NZ condition.

7-19

7.6.27 @DSPLY SVC-10
This SVC will display a message line to the *DO device. The line must be terminated with
either an <ENTER> (X'0D') or an ETX (X'03'). If an ETX terminates the line, the cursor
will be positioned immediately after the last character displayed.

Registers Affected: AF, DE.

Entry:
HL points to the 1st byte of your message.

7.6.28 @ERROR SVC-26
This SVC will provide an entry to post an error message. @ERROR will normally terminate
to the @ABORT SVC. If bit 7 of the error register is SET, the error message will be
displayed and return will be made to the calling program. If bit 6 of the error register
is reset, the complete error information shown below is displayed. If bit 6 is set, then
only the "Error message string" [see Chapter 8, the Appendix, Error Message Dictionary]
is displayed.

Registers Affected: AF [Note: not applicable if @ABORT option].

Entry:
C Error number with bits 6 and 7 optionally set.
DE Optional string buffer pointer used with CFLAG option.

It is possible to have @ERROR return the message string associated with the error
by setting bit-7 of the CFLAG$ (see SVC-101). This can be useful if you want to
control the positioning of the message. Also, in the case of compilers and
interpreters, it can be useful to use this option as a means of providing greater
flexibility to the application program.

*** Error code = xx, Returns to X'dddd'
<filespec, devicespec, or open FCB/DCB status>
Last SVC = nnn, Returned to X'rrrr'

7.6.29 @EXIT SVC-22
This is the normal SVC to perform a program exit and return to DOS. Alternatively, if
your program maintains the integrity of the stack pointer, then a simple RET instruction
will return to the system.

Registers Affected: Not applicable.

Entry:
HL Must be loaded with the return code (0 = no error).

7.6.30 @FEXT SVC-79
This SVC will set up a default file extension in the FCB if the file specification
entered contains no extension.

Registers Affected: AF.

Entry:
DE A pointer to the File Control Block.
HL Pointer to the 3-character default extension which must be stored in upper

case.

7-20

7.6.31 @FLAGS$ SVC-101
This SVC will return a pointer to the base of the flags table. The pointer is returned in
register IY. The flag table is a table of 26 flags lettered A-Z. Certain additional
system variables are indexed relative to this pointer. Once the pointer is obtained, each
flag may be referenced relative to IY. For instance, if the SFLAG$ is needed, use
"IY+'S'-'A'" to reference the storage address of the flag. The following presents the
flag assignments available to the programmer:

Registers Affected: AF, IY.

Exit:
IY Returns the pointer to the base of the flag table.

AFLAG$

This "allocation" flag contains the starting cylinder number that is used by the
system's file space allocation routine when searching for free space on disk
media. The system defaults this value to cylinder 1.

CFLAG$

Bit 0 If set, then the system will not permit the change of HIGH$ via SVC -100.
This flag is reset by @EXIT and @CMNDI. This function is useful for
applications invoking system resources via @CMNDR while still wanting
control of the entire memory region through HIGH$.

Bit 1 If set, @CMNDR is executing. This flag is reset by @EXIT and @CMNDI. Note
that once an @CMNDR invocation is performed, the flag cannot be reset by the
system until "exit" of the application has been made via @EXIT or @CMNDI.

Bit 2 If set, it indicates that the command interpreter in SYS1 is requesting the
line input from the keyboard. This condition is important for keyboard
filters that may change the resident system overlay. If SYS1 is resident and
overwritten when bit-2 is set, you will crash the DOS upon passing control
back to the keyboard driver unless SYS1 is restored.

Bit 3 If set, then the system is requesting execution from either the "SET" or
"SYSTEM (DRIVER=" commands. This bit should be tested by drivers or filters
upon installation to ensure that they are being installed by the proper
system command rather than just by RUN or execution.

Bit 4 If set, then the @CMNDR SVC will only execute system LIB commands. Bear in
mind that "RUN" will be invokable which could then be used to override the
limitation.

Bit 5 If set, the SYSGEN library command will be inhibited. This may be useful to
inhibit application environments from altering the boot initialization
configuration.

Bit 6 If set, then @ERROR will not display any error message. This can be used to
inhibit the posting of error messages by programs invoked from @CMNDR.

Bit 7 If set, then @ERROR will pass the error message to the buffer pointed to by
register pair DE. See @ERROR for more data.

DFLAG$

Bit 0 Set to "1" if SPOOL is active
Bit 1 Set to "1" if TYPE AHEAD is to be active. Type-ahead can betoggled on/off

via this bit.
Bit 2 If set, it indicates VERIFY (ON) has been set.
Bit 3 If set, it indicates that SYSTEM (SMOOTH) is active.
Bit 4 If set, then MemDisk is active.

7-21

Bit 5 If set, it indicates that FORMS is active.
Bit 6 If set, it indicates that KSM is active.
Bit 7 Set if printer supports block graphics for screen print.

EFLAG$

This flag byte is used to indicate the presence of an Extended Command Interpreter
(ECI) program in the SYS13/SYS slot. A non-zero value indicates that the user's
ECI be used to interpret the command line instead of the system's command
interpreter. On entry to your ECI, bits 4-6 of this flag are imaged in the
accumulator and are available for immediate test.

IFLAG$

This flag is used in international systems. Bit assignments are:

Bit 0 Set to indicate French.
Bit 1 Set to indicate German.
Bit 2 Set to indicate Swiss.
Bit 3 reserved
Bit 4 reserved
Bit 5 reserved
Bit 6 Special DMP mode on/off.
Bit 7 Set 7-bit ASCII mode on/off.

KFLAG$
Bit 0 Set to "1" if BREAK pressed (see KFLAG interfacing and the @CKBRKC SVC-105).
Bit 1 Set to "1" if PAUSE pressed (see KFLAG interfacing).
Bit 2 Set to "1" if ENTER pressed (see KFLAG interfacing).
Bit 3 Reserved by DOS.
Bit 4 Reserved by DOS.
Bit 5 Set to "1" if in CAPS lock mode of the keyboard.
Bit 6 Reserved by DOS.
Bit 7 Set to "1" if a character is in the type-ahead buffer.

LFLAG$
Bit 0 If set, FORMAT will not prompt for step rate.
Bit 1 reserved
Bit 2 reserved
Bit 3 reserved
Bit 4 If set, FLOPPY/DCT will inhibit the 8" query.
Bit 5 If set, FORMAT will not prompt for number of sides.
Bit 6 Reserved for Interrupt Mode 2 hardware.
Bit 7 Reserved for Interrupt Mode 2 hardware.

MFLAG$

This flag is machine specific. It is used to contain an image of a particular CPU
port. For instance, on the TRS-80 Model 4, this is an image of the MODOUT port
(X'EC').

7-22

NFLAG$

This "network" flag is used for control in network situations. The bits are
assigned as follows:

Bit 0 If set, the "file-open" bit will be written to the directory when a file is
opened with update or higher access.

Bit 1 reserved
Bit 2 reserved
Bit 3 reserved
Bit 4 reserved
Bit 5 reserved
Bit 6 Set if the system's task processor is in control. NOTE: do not execute an EI

instruction within any driver or filter routine if this bit is set.
Bit 7 - reserved

OFLAG$

This flag is machine specific. It is used to contain an image of a particular CPU
port - generally dealing with memory management. For instance, on the TRS-80 Model
4, this is an image of the OPREG port (84).

PFLAG$

This flag is assigned to printer operations. Bits are as follows:

Bit 0 - reserved
Bit 1 - reserved
Bit 2 - reserved
Bit 3 - reserved
Bit 4 - reserved
Bit 5 - reserved
Bit 6 - reserved
Bit 7 - Set to 1 if the SPOOLer is in a paused state.

SFLAG$

Bit 0 This is the FORCE-TO-READ flag. If set prior to issuing an @OPEN , then the
system will not check for matching LRL nor will the system set the "file
open bit" in the directory for the opened file. However, the file will be
restricted to READ access (unless a lower access is detected during the
open. This bit will be automatically reset by @OPEN.

Bit 1 This bit will be set by @OPEN if an EXEC-only file is opened and bit-2 of
SFLAG$ is set. Under these conditions, @OPEN will change the access granted
to READ so that @LOAD can load the file. Thus, the application (for instance
BASIC) can load an EXEC-only file to be RUN while still detecting the EXEC
protection status.

Bit 2 Set this bit to enable the loading of an EXEC-only file. This bit works in
conjunction with bit-1.

Bit 3 Set to "1" if SYSTEM (FAST) has been established.
Bit 4 Set to "1" to disable the BREAK key.
Bit 5 Set to "1" if DO is in effect executing Job Control Language.
Bit 6 Set to "1" to force extended error messages. This is only practical in a

debugging environment.

7-23

Bit 7 Set to "1" if DEBUG is to be turned on after the execution of the program
just loaded for execution. The use is internal to the system. If DEBUG is
active, the DOS will not enter DEBUG when running an EXEC-only program but
will maintain the DEBUG status via this bit.

TFLAG$

This is the machine type flag. It's value indicates the computer model running the
DOS. Some of the typical TRS-80 values are: 2 = model 2; 4 = model 4; 5 = model
4P; 12 = model 12; 16 = model 16.

UFLAG$

This is a user flag. It is available for whatever purpose you wish to make of it.
It will remain unused by the system; however, the flag contents will be part of
any SYSGEN configuration file.

VFLAG$

Bits 0-3 Are used in controlling the cursor blink rate.
Bit 4 If set, the clock will be displayed on the video screen.
Bit 5 This bit is used by the system to toggle the cursor state.
Bit 6 If set, the cursor is non-blinking; otherwise blinking.
Bit 7 Used by the system to suppress blinking while in the *DO driver to inhibit

the blink task from changing state.

WFLAG$

This is a machine dependent flag commonly used to store an image of mode-1
interrupt masking. For instance, on the TRS-80 Model 4, it stores an image of the
WRINTMASK register (E0).

OTHER DATA

The other system information accessible relative to the flags pointer is as
follows:

FLAGS-47 contains the release number of the DOS (OSRLS$). For instance, OSRLS$ is
X'10' for version/release 6.0.1 (see FLAGS+27 for the version).

FLAGS-1 contains the overlay entry number of the system overlay currently resident
in the overlay region. The low-order four bits reference the overlay number (1-
13).

FLAGS+26 contains a one-byte pointer to the memory page which contains the SVC
vector table (SVCTAB). This is useful to hook into system routines by indexing
into the proper SVCTAB position according to the SVC number. The SVCTAB is always
located on a page boundary.

FLAGS+27 contains the version number of the DOS (OSVER$). For instance, OSVER$ is
X'62' for version 6.2.x

FLAGS+28 through FLAGS+30 contain a jump vector for @ICNFG. See the Chapter 8, the
Appendix, on @ICNFG interfacing for details on this vector.

FLAGS+31 through FLAGS+33 contain a jump vector for @KITSK. See Chapter 8, the
Appendix, on @KITSK interfacing for details on this vector.

7-24

7.6.32 @FNAME SVC-80
This SVC will recover the file name and extension from the directory for the referenced
directory code and drive. It is used by the system to recover the filespec when closing a
file. Although @FNAME can be used for a "directory" function, @DODIR or @RAMDIR are
better candidates for performing that function.

Registers Affected: AF.

Entry:
DE Buffer to receive file name/ext
B DEC of file desired
C drive number of drive containing the file

7.6.33 @FSPEC SVC-78
This SVC will fetch a file or device specification from an input buffer. Conversion of
lower case to upper case will be made.

Registers Affected: AF, HL.

Entry:
HL A pointer to the buffer containing file specification.
DE A pointer to the 32-byte File Control Block.

Exit:
HL Points to the terminating character found.
A Will contain the terminating character.
Z Set if valid file specification found.

7.6.34 @GET SVC-03
This SVC will fetch a byte from a logical device or a file. Note that if the DCB
references the *KI device, an NZ condition with error code of 0 (A=0) will indicate that
no character was available.

Registers Affected: AF.

Entry:
DE A pointer to the DCB or FCB for the device/file.

Exit:
A Byte fetched or error return code.
Z Set if byte was fetched without error.

7.6.35 @GTDCB SVC-82
This SVC will locate the address of the Device Control Block (DCB) associated with the
device name passed in the invocation.

Registers Affected: AF, HL.

Entry:
DE 2-character device name (E has 1st char, D has 2nd char). Note: If DE=0,

then a pointer to the first available DCB will be returned.

Exit:
HL Address of the Device Control Block.
Z set on no error, else error 8 (device not avail).

7-25

7.6.36 @GTDCT SVC-81
This SVC will obtain a pointer to the Drive Control Table (DCT) associated with the
requested logical drive. See the section on DRIVE CONTROL TABLE in chapter 4 for detailed
information on the DCT.

Registers Affected: AF, IY.

Entry:
C logical drive number (0-7).

Exit:
IY the Drive Code Table address.

7.6.37 @GTMOD SVC-83
This SVC will locate the entry address of a module resident in memory provided all
resident modules use the established header protocol.

Registers Affected: AF, DE, HL.

Entry:
DE Pointer to the module name terminated with an ETX (or any character in the

range (X'00'-X'1F').

Exit:
HL Returned entry address of the module.
DE Pointer to address of first byte past the module name storage within the

module header.
Z Set if the module is found in memory.

7.6.38 @HDFMT SVC-52
This SVC is used to pass a function 12 (X'0C') to a disk driver. It is commonly used to
pass a "format drive" command to a hard disk controller. See chapter 4 for more
information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save registers any
other registers they use].

Entry:
C The logical drive number (0-7).

Exit:
A The return code if an error.
Z Set if no error.

7.6.39 @HEX16 SVC-99
This SVC will convert a 16-bit binary number to hex ASCII.

Registers Affected: AF, HL.

Entry:
DE Contains the value to be converted.
HL A pointer to your 4 character buffer.

Exit:
HL Points to end of buffer + 1.

7-26

7.6.40 @HEX8 SVC-98
This SVC will convert a 1-byte number to hex ASCII.

Registers Affected: AF, HL.

Entry:
C Contains the value to convert.
HL A pointer to your 2-character buffer.

Exit:
HL Will point to end-of-buffer + 1.

7.6.41 @HEXDEC SVC-97
This SVC converts a 16-bit binary number into decimal ASCII.

Registers Affected: AF, BC, HL.

Entry:
HL Contains the value to convert.

DE A pointer to your 5-character buffer.

Exit:
DE Will point to end-of-buffer + 1.

7.6.42 @HIGH$ SVC-100
This SVC will alter or return the current value of HIGH$/LOW$. Note that neither can be
altered if bit-0 of the CFLAG$ is set. HIGH$ is a word containing the highest RAM address
usable by the system. User modules that need be protected from being overwritten are
placed in high memory. The module's last address should occupy the current HIGH$ and
HIGH$ is then lowered to correspond to the memory location just prior to the module. LOW$
needs to be set by those programs using @CMNDR that want to protect memory starting from
their lowest address (LOW$ defaults to X'2FFF').

Registers Affected: AF [HL if originally set to 0].

Entry:
B 0, SVC deals with HIGH$
B 1, SVC deals with LOW$
HL If a non-zero value is contained in HL, then HIGH$/LOW$ is changed the that

value. If HL contains a zero value, then the current value of HIGH$/LOW$ is
returned.

7.6.43 @INIT SVC-58
INIT will open an existing file. If the file is not found, it will be created according
to the file specification.

Registers Affected: AF.

Entry:
HL The 256-byte disk I/O buffer to be used during I/O.
DE File Control Block containing the file specification.
B Logical Record Length to be used while the file is open.

7-27

Exit:
A Error return code
CF Set if a new file was created
Z Set if no error is encountered during the INIT.

7.6.44 @IPL SVC-00
This SVC will reboot the system. It functions the same as pressing the hardware RESET
button. A usable booting system disk must be available in physical drive 0.

Registers Affected: Not applicable

7.6.45 @KBD SVC-08
This SVC will scan the *KI device and return the fetched character, if any character is
available. Note that it is possible to generate an end-of-file (EOF) error from the
physical keyboard (NZ with A=X'1C'). Consult the DOS manual for your particular
installation to ascertain what key entry establishes the EOF indication. On the TRS-80
Model 4, for instance, the entry <CONTROL><SHIFT><@> generates the EOF.

Registers Affected: AF, DE.

Exit:
A Contains the value of the key depressed or error return code.
Z Set to indicate register-A contains the entered key code. If reset, then

either no key was depressed or an error occurred. Register-A will contain a
zero (X'00') under no-key, no-error. Register-A will contain a non-zero
error code if an error was detected during the character "get" (perhaps a
route?).

7.6.46 @KEY SVC-01
This SVC will continuously scan the *KI device until a character is available. It will
not return until a character is available.

Registers Affected: AF, DE.

Exit:
A Contains the character entered or error code.
Z Set if no error is encountered.

7.6.47 @KEYIN SVC-09
This SVC will accept a line of input until terminated by either an <ENTER> or <BREAK>.
During the input, the routine will display the entries. Backspace, tab, and line delete
are supported. KEYIN exits with the cursor in whatever state it was in at the time KEYIN
was entered.

Registers Affected: AF, BC, DE.

Entry:
HL Pointer to user line buffer of length = B+1.
B Maximum number of characters to input.
C Should contain a zero (possible enhancement of KEYIN will use register C to

contain a fill character).

Exit:
B Contains the actual number of characters input.
CF Set if <BREAK> terminated the input.
Z Set if no error was encountered.

7-28

7.6.48 @KLTSK SVC-32
This SVC will remove the task assignment from the task table and return to the foreground
application that was interrupted when called by an executing task driver. See Chapter 8,
the Appendix, section on TASK PROCESSING for detailed information.

Registers Affected: Not applicable..

7.6.49 @LOAD SVC-76
This SVC will load a program file (a file in load module format).

Registers Affected: AF, B, HL.

Entry:
DE FCB containing the filespec of the file to load.

Exit:
HL Will contain the program's transfer address if no error is detected during

the load; otherwise it will contain the error return code.
Z Set if the load was successful.

7.6.50 @LOC SVC-63
This SVC will calculate the current logical record number for the file referenced.

Registers Affected: AF, BC.

Entry:
DE A pointer to the FCB for the file to check.

Exit:
BC Returns the current logical record number.
A Error return code if an error is encountered.
Z Set if the operation was successful.

7.6.51 @LOF SVC-64
This SVC will calculate the logical record number where an end-of-file (EOF) error would
be encountered for the referenced file.

Registers Affected: AF, BC.

Entry:
DE A pointer to the FCB for the file to check.

Exit:
BC Returns the EOF logical record number.
A Error return code if an error is encountered.
Z Set if the operation was successful.

7.6.52 @LOGER SVC-11
This SVC will issue a log message to the Job Log device (*JL). The "message" is any
character string terminating with an <ENTER> (X'0D'). The current time string will be
automatically prefixed to the message.

Registers Affected: AF, DE.

Entry:
HL A pointer to the message line to log.

7-29

Exit:
A Error return code if an error is encountered.
Z Set if the operation was successful.

7.6.53 @LOGOT SVC-12
This SVC will display and log a message. It will perform the same function as @DSPLY
followed by @LOGER.

Registers Affected: AF, DE.

Entry:
HL A pointer to the message line to log.

Exit:
A Error return code if an error is encountered.
Z Set if the operation was successful.

7.6.54 @MSG SVC-13
This SVC is a message line handler used to output a message string to any device.

Registers Affected: AF.

Entry:
DE A pointer to a Device or File Control Block to receive output.
HL A pointer to the message line.

7.6.55 @MUL16 SVC-91
This SVC will perform an unsigned integer multiplication of a 16-bit multiplicand by an
8-bit multiplier. The resultant value is stored in a 3-byte register field.

Registers Affected: AF, DE.

Entry:
HL Contains the multiplicand value.
C Contains the multiplier value.

Exit:
HL Returns the two high order bytes of resultant value.
A Returns the low-order byte of the resultant value.

7.6.56 @MUL8 SVC-90
This SVC will perform an 8-bit by 8-bit unsigned integer multiplication. Since overflow
out of the 8-bit register is not returned as an error, the routine should only be used on
small integer values.

Registers Affected: AF, DE.

Entry:
C Contains the multiplicand value.
E Contains the multiplier value.

Exit:
A Returns the resultant value.

7-30

7.6.57 @OPEN SVC-59
This SVC will open an existing file or device. The Logical Record Length (LRL) passed in
register B should match the LRL stored in the directory. If it does not, an "LRL open
fault" error will be returned; however, the file will still be opened. If the file is
already in an open state, the file's directory record will indicate the condition. In
this case, the file will still be opened; however, only READ access (or less depending on
the access permitted by the password) will be granted. A "File already open" error will
also be returned.

Registers Affected: AF.

Entry:
HL A pointer to your buffer for disk I/O.
DE A pointer to the File or Device Control Block containing the filespec or

devicespec.
B Should contain the Logical Record Length for the open file.

Exit:
A Error return code
Z Set if open was successful

7.6.58 @PARAM SVC-17
This SVC can be used to parse an optional command line parameter string. Its primary
function is to parse command parameters contained in a command line totally enclosed
within parentheses. The parameter formats acceptable for the command line entries are as
follows:

PARM=X'hhhh' hexadecimal entry
PARM=ddddd decimal entry
PARM="string" alphanumeric entry
PARM=ON switch entry indicating TRUE
PARM=YES switch entry indicating TRUE
PARM=Y switch entry indicating TRUE
PARM=OFF switch entry indicating FALSE
PARM=NO switch entry indicating FALSE
PARM=N switch entry indicating FALSE

The user-entered parameters that are to be accepted by your application are contained in
a parameter table (PRMTBL$). This table stores the parameter names and a pointer to
indicate where the user response is to be placed. Two forms of the PRMTBL$ are supported.

The first form uses a fixed width table with a maximum name length of six characters. The
PRMTBL$ is coded as follows. A 6-character NAME left justified and filled with blanks
followed by a 2-byte address VECTOR which points to the location which will receive the
parsed values. The 2-byte memory address denoted by the address VECTOR field of your
table receives the value of PARM if PARM is non-string. If a string is entered, the 2-
byte memory address receives the address of the first byte of "string". NAME and VECTOR
may be repeated for as many parameters as are desired. A byte of X'00' must be placed at
the end of the table to indicate its ending point.

The second PRMTBL$ format permits a greater degree of flexibility in parameter handling.
It also provides feedback as to each parameter entered by the user. Its format begins
with a byte of X'80' to indicate the enhanced table. Each parameter is then identified
with four fields. These fields are as follows:

7-31

CONTROL

Bit 7 Set if numeric values are to be accepted.
Bit 6 Set if switch values are to be accepted.
Bit 5 Set if string values are to be accepted.
Bit 4 Set if the first character of NAME is accepted as an abbreviation for

the parameter.
Bits 0-3 Contain the length of the NAME field (1-15).

NAME

Contains the parameter name used to reference the parameter on the command line.
This field must be in upper case.

RESPONSE

Bits 7-5 Are set by @PARAM as appropriate to the type of entry made by the
user.

Bits 0-4 Contain the length of the string entry if a string was entered. A
length of 0 is indicative of either a NULL string or a string longer
than 31 characters. This can be differentiated by testing the first
character of the string. If a double quote ("), then a NULL string
was entered. Any other character indicates a string longer than 31
characters which will be terminated by a (").

VECTOR

This word is a pointer to the memory location that will receive the parsed value.
It is filled in the same manner as that identified in the first format.

Note: Caution is to be observed in the proper use of the enhanced mode when you
have something like the following: ON and ONLY in the table; if ON islisted first,
then ON, ONx, ONxx, etc will match. This is because the parsing stops as soon as
the length of the table entry has been reached. Alternatives are to add an
appending space to the table entry, or order the table ONLY followed by ON.

See Chapter 8, the Appendix, USING THE SYSTEM PARAMETER SCANNER, for detailed
information. The @PARAM protocol is as follows:

Registers Affected: AF, BC, HL.

Entry:
DE A pointer to the beginning of your parameter table.
HL A pointer to the command line to parse.

Exit:
HL Returns pointing to the terminating character.
Z Set if either no parameters found or valid parameters.
NZ If a bad parameter was found.
A Effective with 6.2.0, contains error code 44 on NZ return.

7.6.59 @PAUSE SVC-16
This SVC will suspend program execution and go into a "wait" state for a period of time
determined by your count. The delay is approximately 15 microseconds per count regardless
of the system FAST/SLOW option.

7-32

Registers Affected: AF, BC.

Entry:
BC delay count

7.6.60 @PEOF SVC-65
This SVC will position an open file to the end-of-file position. If the SVC is
successful, an error 28 - "End of file encountered" will be returned.

Registers Affected: AF.

Entry:
DE A pointer to the FCB of the file to position.

Exit:
A Will return the error return code.

7.6.61 @POSN SVC-66
This SVC will position a file to a logical record. This will be useful for positioning to
records of a random access file. When the @POSN routine is used, Bit 6 of FCB +1 is
automatically set to ensure that the EOF will be updated when the file is closed only if
the NRN exceeds the current ERN. This action will guard against any inadvertant
deallocation of space in the random access file. A file can be extended by positioning to
its EOF (see @PEOF) then writing to it.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to position.
BC Contains the logical record number for the positioning.

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful

7.6.62 @PRINT SVC-14
This SVC will output a message string to the printer device, *PR. The message string must
conform to the syntax specified under @DSPLY.

Registers Affected: AF, DE.

Entry:
HL A pointer to the message to be output.

Exit:
A Will contain an error code if the SVC was unsuccessful.
Z Set if the SVC was successful.

7.6.63 @PRT SVC-06
This SVC will output a byte to the printer device, *PR. All character codes are passed
unaltered to the device unless the forms filter is filtering the device. If the *PR
device is not available, the SVC will time out after approximately 10 seconds and return
a "Device not available" error.

Registers Affected: AF, DE.

7-33

Entry:
C Contains the character to print.

Exit:
A Will contain the error code if the SVC was unsuccessful.
Z Set if the SVC was successful.

7.6.64 @PUT SVC-04
This SVC will output a byte to a logical device or a file.

Registers Affected: AF.

Entry:
DE A pointer to the Device or File Control Block of the output device.
C Contains the byte to output.

Exit:
A Will contain an error return code if the SVC was unsuccessful.
Z Set if the SVC was successful.

7.6.65 @RAMDIR SVC-35
This SVC provides abbreviated information from the directories of visible files as well
as free space information for a disk. It will provide information similar to the RAMDIR
vector on earlier Model III TRSDOS 1.3. Register C is used to pass a function code to the
SVC. Linkage is as follows:

Total Directory

Registers Affected: AF.

Entry:
C 0; Obtain directory records of all visible files.
B Should contain the logical drive (0-7) for the disk.
HL A pointer to your buffer which will be passed the data.

Exit:
A Returns an error code if the operation encountered an error.
Z Set if the SVC was successful.

File Directory

Registers Affected: AF.

Entry:
C 1-254; Obtain the directory record for the file whose Directory Entry Code

(DEC) is equal to register C+1.
B Should contain the logical drive (0-7) for the disk.
HL A pointer to your buffer which will be passed the data.

Exit:
A Returns an error code if the operation encountered an error.
Z Set if the SVC was successful.

The information passed to your buffer will consist of 22-byte records. The buffer
is terminated by a plus sign ("+"). Each record is fielded as follows:

7-34

0-14 FILENAME/EXT:D - left justified and buffered with spaces
15 Protection level (0-6)
16 End of File (EOF) offset byte
17 Logical Record Length (0 implies 256)
18-19 Ending Record Number (ERN) of the file
20-21 Space allocated for the file (in K)

Free Space

The SVC linkage to accomplish a retrieval of free space is as follows:

Registers Affected: AF.

Entry:
C 255; Obtain free space information.
B Should contain the logical drive (0-7) for the disk.
HL A pointer to your buffer which will be passed the data.

Exit:
A Returns an error code if the operation encountered an error.
Z Set if the SVC was successful.

The total space allocated to files (in K) is returned in the first two bytes of
the buffer while the total space left available (in K) is stored in the third and
fourth bytes of the buffer.

7.6.66 @RDHDR SVC-48
This SVC passes a function 8 to a disk driver. It is commonly used for reading sector
header information from the next encountered sector ID field of a floppy disk . See
chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).
HL A pointer to the buffer which will receive the data transfer.

Exit:
A Contains an error return code, if any.
Z Set if the operation was successful.

7.6.67 @RDSEC SVC-49
This SVC passes a function 9 to a disk driver. This is used to transfer a sector of data
from the disk drive to your buffer. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
HL A pointer to the buffer to receive the sector of data.
D Contains the logical cylinder number to read (0-255).
E Contains the logical sector number to read (0-255).
C Contains the the logical drive number.

7-35

Exit:
A Passes the error return code if an error is encountered.
Z Set if no error is encountered.

7.6.68 @RDSSC SVC-85
This SVC will read the directory system sector identified by the calling linkage. The
cylinder number containing the directory that is loaded into register D is recovered from
the Drive Control Table (DCT). The DCT for the each drive is obtained via the @GTDCT SVC.

Registers Affected: AF.

Entry:
HL A pointer to the buffer to receive the sector of system data.
D Contains the logical cylinder number to read (0-255).
E Contains the logical sector number to read (0-255).
C Contains the the logical drive number.

Exit:
A Passes the error return code if an error is encountered.
Z Set if no error is encountered.

7.6.69 @RDTRK SVC-51
This SVC passes a function 11 to a disk driver. It is commonly used for reading an entire
track of a floppy disk where permitted by the controller. See chapter 4 for additional
information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).
HL A pointer to the buffer which will receive the data tran sfer.

Exit:
A Contains an error return code, if any.
Z Set if the operation was successful.

7.6.70 @READ SVC-67
This SVC will read a logical record from an open file. If the LRL defined at open time
was 256 (0), then the next sequential sector identified by the Next Record Number (NRN)
contained in the File Control Block (FCB) will be transferred to the buffer established
at open time. For Logical Record Lengths (LRLs) between 1 and 255, the next logical
record will be placed into the user record buffer, UREC, identified in the @READ SVC. The
3-byte NRN is updated after the read operation so as to prepare for the next sequential
read operation.

Registers Affected: AF.

DE A pointer to the FCB for the file to read.
HL A pointer to the UREC (needed if LRL <> 0).

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7-36

7.6.71 @REMOV SVC-57
This SVC will remove a file. The FCB must be in an open condition prepared by @OPEN or
@INIT. The file's directory will be updated by resetting the activity bit (bit-4 of
DIR+0), the corresponding Directory Entry Code (DEC) in the Hash Index Table (HIT) will
be set to zero, and the space occupied by the file will be deallocated from the Granule
Allocation Table (GAT). The 32-byte FCB will be set to zeroes upon successful commpletion
of the file's removal. If the control block contained data appropriate to an opened
device, the @REMOVE SVC will treat the request as if it were an @CLOSE request. Devices
can only be removed via the RESET library command.

Registers Affected: AF.

Entry:
DE A pointer to the open File Control Block (FCB) of the file.

Exit:
A Will contain an error code if an error is encountered.
Z Set if no error is detected.

7.6.72 @RENAM SVC-56
This SVC can be used to change the filename or extension fields of a file stored on disk.
The access protection level must permit renaming for the operation to be successful.

Registers Affected: AF.

Entry:
DE A pointer to the File Control Block (FCB) containing the filespec of the

file to be renamed.
HL A pointer to the FCB containing the new filename/extension.

Exit:
A Will contain an error code if an error is encountered.
Z Set if no error is detected.

7.6.73 @REW SVC-68
This SVC will rewind a file to its beginning and reset the 3-byte NRN pointer to 0. The
next record that will be transferred for I/O with a @READ /@WRITE request will be the
first record of the file.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file that you want to rewind.

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.74 @RMTSK SVC-30
This SVC will remove an interrupt level task from the Task Control Block Vector Table
(TCBVT). See Chapter 8, Appendix, on TASK PROCESSOR for detailed information on the use
of this SVC.

Registers Affected: AF, DE, HL.

Entry:
C Contains the task assignment slot (0-11) to remove.

7-37

7.6.75 @RPTSK SVC-31
This SVC must be invoked only from an executing task. It will exit the task process
currently executing and replace the task's vector address in the Task Control Block
Vector Table (TCBVT) with the address following the SVC instruction. Return is made to
the foreground application that was interrupted. See the TASK PROCESSOR section in
Chapter 8, the Appendix, for detailed information on the use of this SVC.

Registers Affected: Not applicable..

7.6.76 @RREADSVC-69
This SVC will cause a reread of the current sector providing the file was opened with an
LRL between 1 and 255 or the file was accessed via character I/O (@GET /@PUT). Its most
probable use would be in applications that reuse the disk I/O buffer for multiple files
and want to reload the buffer with the proper file sector.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to reread.

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.77 @RSLCT SVC-47
The SVC is used to pass a function code 7 to a disk driver. This function will perform a
test of the selected drive to see if it is in a busy state (i.e. if the disk controller
is still executing a command). If busy, the drive will be re-selected until it is no
longer busy. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Should contain the logical drive number.

7.6.78 @RSTOR SVC-44
This SVC will restore a disk drive to cylinder 0 by passing a function 4 to a disk
driver. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).

Exit:
A Contains an error return code, if any.
Z Set if the operation was successful.

7.6.79 @RUN SVC-77
This SVC will load and execute a program file. Your FCB should not be located in the
memory region that will be loaded with the file you want to execute.

Registers Affected: AF, BC [Note: HL alterted on an error].

7-38

Entry:
DE A pointer to the FCB containing the program's filespec.

Exit:
BC Returns a pointer to the start of the system command buffer.
HL Contains the error return code if an error was encountered.

7.6.80 @RWRIT SVC-70
This SVC will rewrite the current sector following a write operation. The @WRITE function
advances the Next Record Number (NRN) after the sector is written. @RWRIT will decrement
the NRN and write the disk buffer again.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file sector to rewrite.

Exit:
A Contains an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.81 @SEEK SVC-46
This SVC will pass a function code 6 to a disk driver. It is used to issue a controller
SEEK command. Disk controllers optionally verify only the track address, therefore it is
not necessary to pass a sector number to @SEEK. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Contains the logical drive number.
D Contains the logical cylinder requested.

7.6.82 @SEEKSC SVC-71
This SVC is used to seek a specified file record prior to attempting to read or write the
record. The record identified for the seek operation will be that determined by the Next
Record Number (NRN) identified in the File Control Block (FCB). The SEEK operation may
require that the current file buffer be written back to disk if it contains updated
information and the desired record is located in a different disk sector. If an error
occurs in this operation, the error code will be returned. The return code condition will
never reflect an error for the actual SEEK itself. @SEEKSC serves a useful purpose only
when asynchronous I/O is implemented permitting disk seeking external to CPU control. On
the TRS-80 Model 4, it is unnecessary.

Registers Affected: AF.

Entry:
DE A pointer to the File Control Block of the file.

Exit:
A Contains an error code if an error is encountered in writing.
Z Set will indicate that the SEEK operation "completed".

7.6.83 @SKIP SVC-72
This SVC will cause a skip past the next logical record. The SKIP operation may require
that the current file buffer be written back to disk if it contains updated information
and the desired record is located in a different disk sector. If any error is encountered

7-39

in this operation, an error will be returned. The Next Record Number (NRN) contained in
the FCB will be changed accordingly.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to skip.

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.84 @SLCT SVC-41
This SVC will pass a function code 1 to a disk driver. See chapter 4 for additional
information. The function will select a drive. The appropriate time delay specified in
your configuration (SYSTEM (DELAY=Y/N)) should be undertaken if the drive selection
requires it.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Contains the logical drive number (0-7).

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.85 @SOUND SVC-104
This SVC will interface to the sound generator if one is provided with the computer. Note
that the maskable interrupts are disabled during the duration of the tone generation. The
routine should function the same regardless of FAST/SLOW. All regs except the accumulator
are left unchanged. The Z-flag is always set on exit. For those generators capable of
multiple sounds, the linkage is as follows:

Registers Affected: AF.

Entry:
B Contains a function code packed as follows:

Bits 0-2 tone selection (0-7) with 0=highest & 7=lowest.

Bits 3-7 Contain the tone duration (0-31) with 0=short, 31=long. Short
approx 3/32 sec, long approx 3 sec.

7.6.86 @STEPI SVC-45
This SVC passes a function 5 to a disk driver. It is commonly used for specifying a step-
in controller command. See chapter 4 for more information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Logical drive number (0-7).

7-40

Exit:
A Error return code, if any.
Z Set if the operation was successful.

7.6.87 @TIME SVC-19
This SVC will return the time of day in display format (HH:MM:SS). It also will recover a
pointer to the binary time storage which may be useful for those implementing hardware
clocks.

Registers Affected: AF, BC, DE.

Entry:
HL A pointer to the 8-character buffer to receive the time string.

Exit:
DE Returns a pointer to the binary time storage, TIME$. The 3-byte region

contains seconds, minutes, and hours. TIME$-1 stores the 30 Hertz rate
system timer.

7.6.88 @VDCTL SVC-15
This SVC performs various video control functions depending on the function code passed
in register B. It is very useful for handling direct video access. The functions are as
follows:

VIDEO "PEEK"

Registers Affected: AF, BC, DE.

Entry:
B 1; Gets the character at the position identified by HL.
HL Contains the row (0-23) in register H, and column (0-79) in L.

Exit:
A Will be returned with the character at "HL".
Z Set if the operation was successful.

VIDEO "POKE"

Registers Affected: AF, BC, DE.

Entry:
B 2; Puts the character at the position identified by HL.
HL Contains the row (0-23) in register H, and column (0-79) in L.
C Contains the character to put at "HL".

Exit:
Z Set if the operation was successful.

SET CURSOR POSITION

Registers Affected: AF, B, DE.

Entry:
B 3; Moves the cursor to the position identified by HL.

7-41

HL Contains the row (0-23) in register H, and column (0-79) in L.

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

OBTAIN CURSOR POSITION

Registers Affected: AF, B, HL.

Entry:
B 4; Obtains the current cursor position by row and column.

Exit:
HL Contains the row (0-23) in register H, and column (0-79) in L.
A Will contain the error code if an error was encountered.

BUFFER TO VIDEO

Registers Affected: AF, BC, DE, HL.

Entry:
B 5; Moves a BLOCK of RAM to the video RAM.
HL A pointer to the user's RAM BLOCK.

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

BLOCK is 1920 bytes for 6.2, 2048 bytes for 6.0 and 6.1

VIDEO TO BUFFER

Registers Affected: AF, BC, DE, HL.

Entry:
B 6; Moves the video RAM image to a RAM BLOCK.
HL A pointer to the user's RAM BLOCK.

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

BLOCK is 1920 bytes for 6.2, 2048 bytes for 6.0 and 6.1

SCROLL PROTECT

Registers Affected: AF, B.

Entry:
B 7, Inhibit scrolling of lines at the top of the video screen.
C Contains the number of lines to protect (0-7).

7-42

CURSOR CHARACTER

Registers Affected: AF, B.

Entry:
B 8; Change the cursor character.
C Contains the new cursor character (or code value).

Exit:
A Will be returned with the current cursor value (for 6.0.1+).
Z Set if the operation was successful.

VIDEO LINE TRANSFER

Registers Affected: AF, BC, DE, HL.

Entry:
B 9; Invoke line transfer
C transfer direction; 0 = buffer to video, 1 = video to buffer.
H video row to transfer (0-23).
DE A pointer to the user's 80-character buffer.

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

7.6.89 @VER SVC-73
This SVC will perform a @WRITE operation followed by a test read of the sector (assuming
that the WRITE required physical I/O) to verify that it will be readable. The test read
will not cause data to be transferred to the file buffer.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to verify.
HL A pointer to the user record buffer (UREC) containing the logical record

(where the LRL is <> 256).

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.90 @VRSEC SVC-50
This SVC will pass a function 10 to a disk driver. The function should verify the
readability of a sector without transferring any data from the disk to the buffer. See
chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Contains the logical drive number.
D Contain the cylinder number to verify.
E Contains the sector number to verify.

7-43

Exit:
A Will contain an error return code if an error was encountered.
Z set if the operation was successful.

7.6.91 @WEOF SVC-74
This SVC will force the system to update the directory entry with the current end-of-file
information. The file's FCB will remain in an open state.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to WEOF.

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.92 @WHERE SVC-07
This SVC can be invoked to determine the address of the calling routine. It can be useful
for small routines that are to be made run-time relocatable.

Registers Affected: AF, HL.

Exit:
HL Returns the memory address following the SVC instruction.

7.6.93 @WRITE SVC-75
This SVC will cause a write to the next record identified in the FCB . If the file's
Logical Record Length (LRL) identified in the FCB is less than 256, then the logical
record in the user buffer will be transferred to the file. If LRL is equal to 256, a full
sector I/O will be made using the disk I/O buffer identified at file open time.

Registers Affected: AF.

Entry:
DE A pointer to the FCB for the file to write.
HL A pointer to the user record buffer (UREC) containing the logical record

(where the LRL is <> 256).

Exit:
A Will contain an error return code if an error was encountered.
Z Set if the operation was successful.

7.6.94 @WRSEC SVC-53
This SVC will pass a function code 13 to a disk driver. It is used to write a physical
sector of data to the disk. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Contains the logical drive number.
D Contains the number of the cylinder to write.
E Contains the number of the sector to write.
HL A pointer to the buffer containing the sector of data.

7-44

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

7.6.95 @WRSSC SVC-54
This SVC will pass a function code 14 to a disk driver. It is used to write a system
sector (used in the directory cylinder). Where the disk controller supports the IBM Data
Address Mark convention, the controller command should denote the "deleted data mark", or
X'F8' in lieu of the standard data mark (X'FB'). This distinct mark is used in the @RDSEC
command to detect the presence of a system (directory) sector. Other than this Data
Address Mark variation, @WRSSC is the same as @WRSEC; however, the DOS will use @WRSSC
for all writes to the directory cylinder. See chapter 4 for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Contains the logical drive number.
D Contains the number of the cylinder to write.
E Contains the number of the sector to write.
HL A pointer to the buffer containing the sector of data.

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

7.6.96 @WRTRK SVC-55
This SVC will pass a function code 15 to a disk driver. It is used to format a physical
track on a disk drive. Where the data pattern is under software control (as is the case
for floppy disk drives), the data format must conform to that identified in your
controller's reference manual. Hard drives that are formatted by track may use this SVC
to control the track to track formatting. If the target drive is a floppy disk, then it
is necessary to precede the @WRTRK SVC with a drive select via SVC @SLCT . See chapter 4
for additional information.

Registers Affected: AF [Note: DOS saves BC, IY; drivers should save any other
registers they use].

Entry:
C Contains the logical drive number.
HL Contains a pointer to the buffer containing the format data
D Contains the number of the cylinder to write.

Exit:
A Will contain the error code if an error was encountered.
Z Set if the operation was successful.

8-1

8. APPENDIX
8.1 BOOT INITIALIZATION ICNFG INTERFACING
In order to bring up the "DOS Ready" message when first powering up your computer, all
that you need do is place a SYSTEM diskette into the disk drive physically assigned to
the zero slot and depress a RESET button. In a few short moments, the ready prompt
appears on the display screen. Although, to the casual observer, not much appears to have
taken place, the machine has executed many "behind-the-scenes" procedures in order to
make the operating system available for your commands. The appendix section on SYSTEM
DISK BOOTING covers the individual steps undertaken. Here we discuss one of the final
steps - the execution of an initialization configuration routine.

Certain items of hardware require an initialization process before they can be used. For
instance, the RS-232 hardware needs to have parameters such as baud rate, word length,
and number of stop bits initialized before it can be used. This initialization process
could be a software routine which transfers the required parameters to the UART and Baud
Rate Generator. Certain hard disk controllers (the XEBEC controller, for instance) may
also need to be initialized before the attached disk drive can be used. This
initialization process may be implemented as a program executing under the AUTO command
or it may be a small routine that is part of the disk driver. If the latter, it would be
useful to have it execute prior to the "DOS Ready" message. You may also develop a
complex system function that takes over one or more SuperVisor Call functions. Since such
a function could reside in memory as part of a configuration, it would be useful to
have it automatically hook into the SVC table. Again, if the interfacing routine were
part of the function code in memory and the system provided a method to execute such a
routine, it would alleviate the problem of executing the hook.

After the system booting process loads a configuration file, it CALLs a vector, called
the @ICNFG vector. The contents of the vector are accessible from the FLAGS pointer
returned by the @FLAGS$ SuperVisor Call. Thus, any initialization routine that is part of
a memory configuration can be executed if its entry address is made available to @ICNFG.
This is accomplished by placing your entry address into @ICNFG while you save the former
address - eventually transferring control to the former address when your routine
completes its execution. This process is called "chaining into @ICNFG". If you need to
configure your own routine that requires initialization when the machine is booted, you
chain into @ICNFG.

Let's first look at a sample initialization configuration routine linkage. Your
initialization routine would obviously be unique to the function it was to perform so we
will not illustrate that part. A template for such a routine would appear as:

 INIT CALL ROUTINE ;Start of init
 LINK DB 'Roy' ;Pass to the chain
 ROUTINE .
 Your initialization routine
 .
 .
 RET ;End with a RET instruction!

The relocated address identified by the label "INIT" is the entry point that will be
placed into the @ICNFG vector field. The 3-byte field identified as "LINK" will be used
to store the original contents of the @ICNFG vector field. Thus, when INIT receives
control, it "calls" your initialization routine then passes back to the next routine
chained into @ICNFG.

We will now illustrate a procedure to accomplish the chaining linkage. The chaining
procedure is performed by that part of your program which is going to place the memory-

8-2

resident routine into its execution location in memory. The first thing that must be done
is to move the contents of the @ICNFG vector into your initialization routine. The code:

 LD A,@FLAGS$;Get flags pointer
 RST 40 ; into register IY
 LD A,(IY+28) ;Get @ICNFG byte 1
 LD (LINK),A ; & save in LINK+0
 LD L,(IY+29) ;Get address LOW and HIGH
 LD H,(IY+30) ; then save in the
 LD (LINK+1),HL ; LINK address vector

does this by transferring the three byte vector to your routine. You then need to
relocate your routine to its execution memory address. Once this is done, transfer the
relocated initialization entry point to the @ICNFG vector as a jump instruction with this
code:

 LD HL,INIT ;Get (relocated)
 LD (IY+29),L ; init address
 LD (IY+30),H
 LD A,0C3H ;Set JP instruction
 LD (IY+28),A

It is sometimes necessary to have your initialization program execute the initialization
routine so that the function of the module is immediately available. You probably do not
want to execute any other routines that may be chained into @ICNFG so you should not CALL
the chain! Your initialization routine can be executed by calling its relocated address
as in:

 CALL ROUTINE ;Initialize only mine

Don't forget to SYSGEN after linking in your routine. The SYSGEN process includes saving
the revisions to @ICNFG so that any changes will be part of the system configuration the
next time the disk is booted. By following these procedures, you can effect the
invocation of your routine every time you boot the operating system disk which contains
this configuration.

8.2 THE KFLAG$ SCANNER
Many applications have the need to detect a PAUSE or BREAK condition while they are in
execution. BASIC does this after every logical statement is executed (i.e. after each end
of line or ":" statement separator). That's how, in BASIC, you can stop a program with
the <BREAK> key or pause a listing. The classical method that programmers have used to
detect the condition was to scan the keyboard via the @KBD SuperVisor Call. If a
character was input, and it was a <BREAK> or a <PAUSE>, the appropriate action would be
taken. Any other entry that was available would be ignored which would discard all other
keyboard entries. Unfortunately, if the user was trying to make use of keyboard type-
ahead, each @KBD request looking for <BREAK> or <PAUSE> would extract one character from
the type-ahead buffer; thus the user's typed-ahead entries would be lost.

Another method could be used on a matrix keyboard that is accessible to the application.
This method does not request entries via the @KBD call but scans the keyboard physically
examining the keyboard matrix. A problem with this method is that accessible matrix
keyboards are not always available. A second problem is that if such a keyboard was
available, the application would not be portable across Version 6 installations.

If an application uses the KFLAG$ keyboard function latch to observe the BREAK or PAUSE
condition, it overcomes these deficiencies [a third condition - that of the ASCII CR is
also supported]. KFLAG$ contains three bits associated with the "keyboard" functions of
BREAK, PAUSE (sometimes interpreted as <SHIFT-@>), and CR (sometimes interpreted as

8-3

<ENTER>). An interrupt task processor routine (herinafter called the KFLAG$ scanner or
just scanner) examines the physical keyboard and sets the appropriate KFLAG$ bit if any
of the conditions are observed. Similarly, the system's COM serial driver routine also
sets the appropriate KFLAG$ bits if it detects the matching conditions being received. In
the KFLAG$, bit-0 is assigned for BREAK, bit-1 is assigned for PAUSE, and bit-3 is
assigned for CR.

It is important to note that the interrupt KFLAG$ scanner does NOT reset the condition
bits - it only sets them. Thus, it is up to the application using these flag conditions
to reset the bits as required. Now, you may ask, why wasn't the scanner coded so that it
resets the bits? Well, if that was the case, you would never sense the "events" as they
would occur too fast. Think of the KFLAG$ condition bits as a latch. Once a condition is
detected (latched), it remains latched until some routine resets the latch, usually after
examining a condition and taking action - a function to be performed by a KFLAG$
examination routine that is part of the application using it.

With this introduction, let's look at an illustrative routine designed to use the <BREAK>
and <PAUSE> conditions of the KFLAG$ latch. This routine assumes that index register IY
can be altered with impunity.

 CKPAWS LD A,@FLAGS$;Get Flags pointer
 RST 40 ; into reg IY
 LD A,(IY+'K'-'A') ;P/u the KFLAG$
 RRCA ;Bit 0 to carry
 JP C,GOTBRK ;Go on BREAK
 RRCA ;Bit 1 to carry
 RET NC ;Return if no pause
 CALL RESKFL ;Reset the flag
 PUSH DE ;Don't alter reg DE
 FLUSH LD A,@KBD ;Flush type-ahead
 RST 40 ; buffer while
 JR Z,FLUSH ; ignoring errors
 POP DE
 PROMPT PUSH DE
 LD A,@KEY ;Wait on key entry
 RST 40
 POP DE
 CP 80H ;Go on <BREAK>
 JP Z,GOTBRK
 CP 60H ;Ignore <PAUSE>
 JR Z,PROMPT ; else ...
 RESKFL PUSH HL ;Reset KFLAG$ without
 PUSH AF ; altering AF or HL
 LD A,@FLAGS$;P/u flags pointer
 RST 28H ; into reg IY
 RESKFL1 LD A,(IY+'K'-'A') ;P/u the flag
 AND 0F8H ;Strip ENTER,
 LD (IY+'K'-'A'),A ; PAUSE, BREAK
 PUSH BC ;Don't alter register BC
 LD B,16
 LD A,@PAUSE ;Pause a bit to "debounce"
 RST 40 ; the key entry
 POP BC
 LD A,(IY+'K'-'A') ;Check if finger is
 AND 7 ; still on key
 JR NZ,RESKFL1 ;Reset it again
 POP AF ;Restore registers
 POP HL ; and exit
 RET

In order to understand this KFLAG$ examination routine, the best thing to do would be to
take apart the entire routine and explain each sub-routine. The first piece:

8-4

 CKPAWS LD A,@FLAGS$;Get Flags pointer
 RST 40 ; into reg IY
 LD A,(IY+'K'-'A') ;P/u the KFLAG$
 RRCA ;Bit 0 to carry
 JP C,GOTBRK ;Go on BREAK
 RRCA ;Bit 1 to carry
 RET NC ;Return if no pause

reads the KFLAG$ contents. The @FLAGS$ SuperVisor Call is used to obtain the flags
pointer from the DOS. Be aware that if your application is using the IY index register,
then you better save and restore it within the CKPAWS routine (alternatively, you could
use memory loads in lieu of IY indexing, use @FLAGS at the beginning of your application
to calculate the location of KFLAG$, and stuff the address into the CKPAWS memory LD
instructions.) The first rotate instruction places the BREAK bit into the carry flag.
Thus, if a <BREAK> condition was in effect, the sub-routine would branch to "GOTBRK" -
which is your break handling routine. If there is no pending BREAK, the second rotate
places what was originally in the PAUSE bit into the carry flag. If a <PAUSE> condition
is not in effect, the routine returns to the caller. This sequence of code gives a higher
priority to <BREAK> (i.e. if both BREAK and PAUSE conditions are pending, the <BREAK>
condition has precedence). It is important to note that the GOTBRK routine needs to clear
the KFLAG$ bits after it services the <BREAK> condition. This is simply done via a call
to RESKFL.

The next part of the routine is executed on a <PAUSE> condition.

 CALL RESKFL ;Reset the flag
 PUSH DE ;Don't alter reg DE
 FLUSH LD A,@KBD ;Flush type-ahead
 RST 40 ; buffer while
 JR Z,FLUSH ; ignoring errors
 POP DE

First the KFLAG$ bits are reset via the call to RESKFL. Next, we take care of removing
any characters that are stored in the type-ahead buffer (the system will automatically
clear the type-ahead buffer when a BREAK condition is latched). This can be done by
repeatedly invoking the @KBD request until it returns a "no character available"
condition code.

Now that the routine is in a PAUSEd state and the type-ahead buffer is cleared, it must
wait for a key input. The following routine does this:

 PROMPT PUSH DE
 LD A,@KEY ;Wait on key entry
 RST 40
 POP DE
 CP 80H ;Go on <BREAK>
 JP Z,GOTBRK
 CP 60H ;Ignore <PAUSE>
 JR Z,PROMPT ; else ...

The PROMPT routine is coded to accept a <BREAK> and branch to your BREAK handling routine
so that the user can "abort" from a PAUSE. It will ignore repeated <PAUSE> entries (the
60H is the standard byte value that is interpreted as a PAUSE entry). Any other character
will cause it to fall through to the following routine which clears the KFLAG$ latch.

 RESKFL PUSH HL ;Reset KFLAG$ without
 PUSH AF ; altering AF or HL
 LD A,@FLAGS$;P/u flags pointer
 RST 40 ; into reg IY
 RESKFL1 LD A,(IY+'K'-'A') ;P/u the flag
 AND 0F8H ;Strip ENTER,

8-5

 LD (IY+'K'-'A'),A ; PAUSE, BREAK
 PUSH BC ;Don't alter register BC
 LD B,16
 LD A,@PAUSE ;Pause a bit to "debounce"
 RST 40 ; the key entry
 POP BC
 LD A,(IY+'K'-'A') ;Check if finger is
 AND 7 ; still on key
 JR NZ,RESKFL1 ;If so, reset it again
 POP AF ;Restore registers
 POP HL ; and exit
 RET

The RESKFL subroutine needs to be called when you first enter your application. This is
necessary to clear the flag bits that were probably in a "set" condition. This "primes"
the detection. The routine also needs to be called once a BREAK, PAUSE, or ENTER
condition is detected and handled.

Another method that can be used to detect the BREAK condition is to use the @CKBRKC
SuperVisor Call - SVC-105. This SVC essentially performs all of the code needed to test
the BREAK bit of the KFLAG$ and reset it as required. Thus, instead of using your own
code to test the KFLAG$'s BREAK bit, you can invoke @CKBRKC. An NZ return indicates that
the BREAK key was depressed. Since the SVC also clears the BREAK bit, it should be
invoked once at the beginning of your program to ensure that the bit is first reset.

8.3 DISK LOAD MODULE FORMATS
A load module is simply a disk file that can be loaded into memory by the system loader.
The file is made up of variable length records and is usually a program. Many different
types of records are included in a load module - the DOS makes extensive use of distinct
record types in load modules. One record type is a load record which contains information
on where it is to load into memory. If the file can be directly executed as a program, it
then becomes known as an executable load module (ELM). The usual term that has been
applied to such a file is "CMD". That's because a directly executable load module can be
invoked as if it were a system CoMmanD. We further use the default file extension of /CMD
for these command files.

A load module can be conceptualized as a sequence of RECORDS. Note that we did not say an
ordered sequence. Thus, the implication is that the records do not have to be in an
ascending order (contiguous load addresses). Each record contains three fields: a TYPE
field, a LENGTH field, and a DATA field. It has a one-byte indicator as to what TYPE of
record it is. This TYPE code is used to denote a record as a HEADER record, a TRANSFER
record, an ISAM directory entry record, a LOAD record, or other meaningful structure.
Each record also has a one-byte LENGTH field which is the length of the data area field.
The data field length thus ranges from <1-256> in value. The remaining part of the record
is its DATA AREA and is used to store program code, directory information, messages, or
other pertinent information. If you are familiar with BASIC random access files, you will
see the similarity in the fielding of records - except in this case, we have variable
length sequentially accessed records [with partitioned data sets provided in the PRO-PaDS
utility, you also have variable length indexed sequential accessed records]. Figure 8-1
lists the various TYPE codes currently used in the operating system.

8-6

===
| |
| TYPE DATA AREA |
| ---- ---------------------------------- |
| 01 Object code load block |
| 02 Transfer address |
| 04 End of partitioned data set member |
| 05 Load module header |
| 06 Partitioned data set header |
| 07 Patch name header |
| 08 ISAM directory entry |
| 0A End of ISAM directory |
| 0C PDS directory entry |
| 0E End of PDS directory |
| 10 Yanked load block |
| 1F Copyright block |
| |
===

Figure 8-1: Load Module TYPE Codes

Any code above X'1F' is invalid as a record type. In addition, any code not listed in
figure 8-1 is reserved for future use.

Let's look at a sample file. Start by listing the first sector of the FLOPPY/DCT utility
via the command: LIST FLOPPY/DCT (H). Notice that it starts out with:

 05 06 46 4C 4F 50 50 59 1F 2A 43 6F ...
 . . F L O P P Y . . C o ...

stretched across the screen. What you have here is a load module header (TYPE=05). The
length byte (LENGTH=06) follows the TYPE code. The 6-byte DATA AREA field is the header
name. All records follow this "fielding" order. A record is organized with a TYPE,
LENGTH, DATA sequence. The X'1F' begins the second record. It happens to be a copyright
record with a LENGTH of X'2A' or 42 decimal bytes. Incidentally, the TYPE=1F record is
generated automatically by the "COM" pseudo-op in PRO-CREATE , the assembler used to
develop and maintain the operating system.

Note that each record begins with the TYPE code and the first byte following the end of a
record is always the TYPE code of the next record. The only exception is when a TYPE code
indicates the end of a file. If you look further in the record displayed at relative
position X'34', or if you count 42 bytes down from the "C" of "Copyright", you will see:

 01 02 00 2C D5 ...

The record TYPE is a load block (TYPE=01), and the length of the data area is X'02', or
258 data bytes. Yes, we previously stated that the length ranged up to 256 and here we
have 258! This TYPE-01 record is a special case. The two-byte field following the LENGTH
is the starting load address for the rest of the field. Since the LENGTH value includes
the 2-byte load address, a length of X'03' would indicate only one load byte. A length of
X'04' would indicate two load bytes. A length of X'FF' would indicate 253 load bytes. A
length of X'00' would indicate 254 load bytes. To be able to have a data area with up to
256 bytes of loadable data, the LENGTH values of X'01' and X'02' are indicative of 255
and 256 load bytes respectfully. This is accomplished by having the system loader
decrement the length value by two when reading a load address. The resultant value
becomes the true length of the loadable data.

If you let the program listing proceed to the end of the file, the last four bytes should
appear as:

8-7

 02 02 00 2C

This will represent the TRANSFER record (TYPE=02). Again, we have a LENGTH byte which
shows a 2-byte data field. The data field contains the transfer address or entry point to
the program in standard low-order, high-order sequence. The system uses this address as
an entry to the program after successfully loading it into memory. This address is also
what is returned in register pair HL by the @LOAD SuperVisor Call.

So far we have discussed the HEADER, the COPYRIGHT, the LOAD, and the TRANSFER records.
These are the four common record types you will find in most load module files. We also
observe that our discussion of program load modules was limited to a single program per
file. Another kind of file is one that contains many program modules (or data modules) as
sub-files. Since the file is divided into sub-files, it is considered a "partitioned data
set" abbreviated as "PDS". The PDS contains a directory of its sub-files with each sub-
file being termed a MEMBER of the PDS and having an entry in the directory. The system
loader supports a particular kind of PDS used to contain the library overlays: SYS6/SYS,
SYS7/SYS, and SYS8/SYS (LIB A, B, and C respectively).

Let's take a look at one of these libraries. List the first record of SYS6/SYS via the
command: LIST SYS6/SYS.LSIDOS (H). Look at the area just past the copyright message. You
will see something like this:

 08 06 21 00 24 00 00 CB 08 06 61 ...

The TYPE code of X'08' indicates an ISAM DIRECTORY ENTRY record. The LENGTH byte denotes
a DATA area of six bytes. After the sixth byte, you will see another TYPE=08 starting
another ISAM directory entry record. SYS6 is a partioned data set. The TYPE=08 records
are the directory entries for its members.

The ISAM directory data area is used by the SYSTEM loader to locate where a particular
member can be found in the file. The data area includes positioning information
indicating the exact byte position in the PDS which is the first record of the member.
The six-byte data field is further divided into sub fields. The first byte (in this case,
21) is the ISAM entry number. This entry number is provided to the system loader when a
library command is parsed by the command interpreter. The entry number is the PDS member
that will execute your request. The system loader searches the PDS directory for a
matching directory record. The next two-byte sub-field is the transfer address of the
member. The transfer address is contained in the directory so that more than one transfer
address can be applied to a member. Therefore, a member can have multiple entry points.
The last three-byte field is the triad pointer which points to the first byte of the
member. The triad pointer is composed of the Next Record Number (NRN) and Relative Byte
Offset for the member's first record byte. The system then positions to the pointer and
loads the member. Thus you have six bytes of data as specified by the LENGTH byte. Since
the process uses an index (the directory) to locate the member's starting byte then
proceeds to sequentially read the member, the access method is termed "Indexed Sequential
Access Method" (ISAM).

A TYPE-08 record can also have a 9-byte data area. In the PRO-PaDS utility available from
MISOSYS, the ISAM directory entry record includes a three-byte subfield which contains
the TRUE length of the member. The position of a member's logical end-of-file (EOF) can
thus be calculated by adding its length to its position and adjusting for sector
boundary alignment.

While you are looking at the first sector of SYS6, proceed to the first byte following
the last ISAM directory record. You will observe the sequence:

 0A 01 00 04 01 00 01 02 00 26 ...

8-8

The TYPE=0A indicates that it is the end of a PDS directory. The SYSTEM loader will
return a "file not found" error if it reaches this record without finding a match of the
ISAM number. The LENGTH=01 is needed because ALL load module records MUST have a length
byte. The DATA area contains only a single arbitrary byte, X'00'. We cannot indicate a
null record because a length byte of X'00' indicates 256 data area bytes. Thus, the X'0A'
record type must have a minimum of one byte in its data area.

The following record is a TYPE=04 to indicate the end of a PDS member. This record serves
but one purpose when used immediately following the directory - it will result in the
return of a "Load file format error" if a library file is executed as if was a CMD file.
When not expecting a partitioned data set file, the SYSTEM loader will ignore record
types other than X'01' and X'02' except for the X'04'. The file reading will terminate at
the X'04' with the above-mentioned error message.

The record type X'04' is usually used at the end of each partitioned data set member. If
you list through SYS6, you will discover that each member ends with "04 01 00" rather
than a TYPE=02 record. The system loader uses the X'04' type code in lieu of the transfer
address code because the SYSTEM loader recovers the transfer address from the ISAM
directory. Thus it needs to take action different from that when a standard load file has
been completely loaded.

The next record types to discuss are those used in a generalized PDS file as exemplified
in the PRO-PaDS utility. Such a file starts with a record type X'06' in lieu of an X'05'
which is the normal header type for a load module. The first release of PRO-PaDS uses the
X'06' in certain utility commands to note whether the referenced file is a partitioned
data set compatible with PRO-PaDS utilities. The DOS does, in fact, make this information
available known by setting a bit in the FCB when a PDS file is opened.

The PRO-PaDS partitioned data sets include a MEMBER DIRECTORY which correlates the member
NAME with its associated ISAM entry number. A representative PDS MEMBER DIRECTORY entry
looks like this:

 0C 0B 64 69 72 20 20 20 20 20 01 01 7A 0C ...
 . . D I R . . z

The TYPE=0C record indicates a PDS member directory entry record. The LENGTH byte
specifies that the data area is an 11-byte field. The DATA AREA is subfielded as an 8-
byte member name (stored in lower case), a one-byte ISAM entry number that is used to
match up with a corresponding ISAM directory entry record, and a 2-byte field of member
data. The first byte uses bit-7 to indicate a data member in contrast to an executable
CMD program. Bit-6 indicates that the member has been established as "sector-origin" and
can be directly accessed by linkage to the standard file access routines supported in
PRO-PaDS Version 2. Bit positions 5-4 are reserved for future use. Bits 3-0 and the next
byte contain the 12-bit DATE field formatted as in the standard directory entry record.
This entry is the date that the member was added to the PDS. The end of the MEMBER
DIRECTORY is indicated by a TYPE=0E record with its expected length and data field (as in
"0E 01 00"). The purpose of this record is similar to the TYPE=0A record for the ISAM
directory. It indicates the end of the MEMBER directory. The ISAM directory is positioned
in the PDS to follow the MEMBER directory.

One last set of record types to discuss is the records associated with the PATCH utility.
When you apply an X-patch to a file, the name of the patch file is used as a header name
with a record type of X'07'. Thus, if you want to YANK the patch, the PATCH program can
read through the file and search for a like-named header. If a matching header is found,
PATCH will change the header record type to a X'09' to indicate a yanked patch. Also,
since it may be impossible to remove the patch without bubbling up any code blocks
following the patch (another patch maybe?), PATCH will change the TYPE=01 records to
TYPE=10 records. The TYPE=10 records will not be loaded by the SYSTEM loader but will be

8-9

considered as non loadable comment records. It is thus possible to "un-yank" a yanked
patch; however, this feature is not implemented in the PATCH utility.

8.4 ERROR MESSAGE DICTIONARY
Any time a SuperVisor Call experiences a malfunction, it returns an error code to the
caller. The error codes possible are in the range <0-63>. The operating system associates
a message string with each error code. Each string can be displayed or obtained via the
@ERROR SuperVisor Call request. The words contained in the messages are stored in an
error dictionary which is in a system overlay. This section of the appendix is a
compilation of those error code messages and associated meanings.

Error 00: No error

A return code of zero indicates that there is no error.

Error 01: Parity error during header read

During a read request, the sector ID FIELD could not be satisfactorily read. Repeated
failures would most likely indicate media or hardware failure.

Error 02: Seek error during read

During a read sector disk I/O request, a sector ID FIELD noting the requested cylinder
was not located within the time period allotted by the controller. Either the cylinder is
not formatted on the diskette, or the step rate designated is too low a value for the
hardware to properly respond.

Error 03: Lost data during read

During a read sector request, the CPU was late in accepting a byte from the FDC data
register and subsequently lost one of the bytes from the sector. For more information,
consult the reference manual for the floppy disk controller used in your disk controller.

Error 04: Parity error during read

During a read request, the FDC sensed a CRC error. Possible media failure would be
indicated. The Drive hardware could also be at fault.

Error 05: Data record not found during read

A disk sector read request was generated with a sector number not found on the cylinder
referenced.

Error 06: Attempted to read system data record

A read request for a sector located within the directory cylinder was made without using
the directory read routines. Directory cylinder sectors are written with a data address
mark that differs from the data sectors data address mark. See chapter 4 and chapter 5
for additional information concerning address marks.

Error 07: Attempted to read locked/deleted data record

This error indicates that a request was entered which required a system overlay that had
been purged from the system disk.

8-10

Error 08: Device not available

A reference was made for a logical device that either could not be located in the Device
Control Blocks or the hardware associated with the device was not available (for example,
a printer that was off-line).

Error 09: Parity error during header write

This is the same type of error as error-01 except that the operation requested was sector
WRITE.

Error 10: Seek error during write

This is the same type of error as error-02 except that the operation requested was sector
WRITE.

Error 11: Lost data during write

The CPU was not fast enough in transferring a byte to the FDC during a sector write
request so it could be written to the disk. Therefore, one or more of the sector bytes
were lost.

Error 12: Parity error during write

A CRC error was generated by the FDC during a sector write operation.

Error 13: Data record not found during write

This is similar to error-05. The sector number requested for the write operation, could
not be located on the cylinder being referenced. Either the request is erroneous, or the
cylinder is improperly formatted.

Error 14: Write fault on disk drive

This error message results when the disk controller returns a "write fault" error.
Consult your FDC or HDC reference manual.

Error 15: Write protected disk

A write request was generated to a disk which either had a write protected diskette or
the drive was write protected via software (see the SYSTEM (WP) DOS command). On 5-1/4"
diskettes, covering the notch will protect the diskette from being written. On 8" media,
exposing the notch will perform the same thing. If you want to write on a diskette, you
must observe the proper notch condition.

Error 16: Illegal logical file number

A Directory Entry Code was referenced that was invalid for the referenced drive.

Error 17: Directory read error

Any disk error sensed during the reading of directory entry record sectors will result in
this error. It could be media failure, hardware failure, or program crashes. The system's
directory read accesses replace any lower level error (such as parity error) with this
code.

8-11

Error 18: Directory write error

This error is similar to error-17 but the error condition is sensed while attempting to
write a directory sector back to the disk. The integrity of the directory is now suspect.

Error 19: Illegal file name

The file specification provided to the system contains a character not conforming to the
file specification syntax.

Error 20: GAT read error

Disk errors sensed while reading the Granule Allocation Table will cause this error. It
could be media failure, hardware failure, or program crashes.

Error 21: GAT write error

This error is similar to the error-20 except that the error was sensed during a WRITE
request. The integrity of the GAT is suspect.

Error 22: HIT read error

This error is similar to error-20 but occurred during a READ of the Hash Index Table.

Error 23: HIT write error

This error is similar to error-21 but occurred during a WRITE of the Hash Index Table.

Error 24: File not in directory

This error indicates that a file specification was referenced for OPEN that could not be
located in the directory. Note that if the request was to LOAD a program load module
file, the error code returned would be "Program not found". Most likely the cause was a
misspelled filespec.

Error 25: File access denied

This indicates that an access request was made for a file that was password protected and
the access protection level was NONE.

Error 26: Directory space full

An open of a new file was requested and the target disk either was not available or its
directory was entirely in use. Use another diskette or remove uneeded files.

Error 27: Disk space full

While a file was being written, all available space on the disk was allocated before the
file was completely written. Whatever space was already allocated to the file will still
be allocated although the file's end of file pointer will not be updated. It may be
useful to remove the file to recover the space after writing the file to another
diskette.

8-12

Error 28: End of file encountered

The end of a file was reached during a read or position access. The file was probably
smaller than the application expected. This error can also be used within an application
to determine the end of a sequentially read file.

Error 29: Record number out of range

A request was made to read a sector of a file where the Next Record Number of the sector
was beyond the Ending Record Number.

Error 30: Directory full - can't extend file

This error will result when the system must allocate an extended directory entry (FXDE)
to a file because it has used all extent fields of its last directory entry record and no
spare directory slot is available. All available directory entry records are in use. The
solution would be to repack the disk by individually copying its files to a freshly
formatted diskete.

Error 31: Program not found

The execution of a CMD program file could not be completed because the file was not
located in the directory. Either the filespec was misspelled or the disk that contained
the file was not mounted.

Error 32: Illegal drive number

This error will occur whenever a reference is made to a disk drive that is not included
in your system. It may be disabled, or the drive requested was not ready for access (no
diskette, drive door open, etc.).

Error 33: No device space available

This error will generally be returned by the SET command when you enter a request to
establish a new device in the system and all of the resident system area reserved for
Device Control Block tables is already in use. It is suggested that you use the "DEVICE
(B=Y)" command to see if any currently defined non-system devices can be eliminated by
using RESET.

Error 34: Load file format error

This error will be returned by the system loader when an attempt is made to LOAD a file
that does not conform to the load module format structure. Most likely, the file
referenced is a data file or a BASIC program file.

Error 35: Memory fault

This error indicates that a memory cell malfunctioned during the process of loading a
program file.

Error 36: Attempted to load read only memory

This error would be returned if the program file being loaded referenced a memory cell
that could not be altered. Either the cell was part of the read only memory (ROM), or the
address was referencing an area of the machine not containing any read/write memory
(RAM). Do not expect to see this error.

8-13

Error 37: Illegal access attempted to protected file

This indicates that an access request was made for a file that was password protected and
the access protection level was not met for the request. Check if the disk is write
protected.

Error 38: File not open

A file access operation was requested using a File Control Block that indicated a closed
file. Most likely, there was a program error.

Error 39: Device in use

A request was made to REMOVE an active device from the Device Control Block table. It is
necessary to first RESET a device before removing it.

Error 40: Protected system device

A request was made to REMOVE a standard system device. You cannot remove system devices
such as *KI, *DO, *PR, *JL, *SI, and *SO.

Error 41: File already open

A request was made to open a file that was already open with an access level of UPDATE or
greater. If you are in a single user environment and you know that the file is not open,
you can reset the "open" indication by issuing a "RESET filespec" command.

Error 42: LRL open fault

This error indicates that a file was opened with a logical record length passed in the
open linkage that differed from the file's LRL as stored in its directory. The file will
be properly opened with the LRL passed in the open. This error is for information only.

Error 43: SVC parameter error

This error will be returned by a SuperVisor Call when one or more parameters associated
with its register linkage contain invalid values.

Error 44: Parameter error

This error is returned by the parameter scanner when it detects in invalid command line
parameter string. The error is usually caused by a misspelled parameter name or value,
use of an unsupported abbreviation, or by entering a parameter that does not exist for
the command invoked.

Errors 45-62: Unknown error code

Error codes in this range may not be defined by the operating system. Any time the @ERROR
routine is called with an error number in this range, the "Unknown error code" message
will be displayed. It most likely indicates a software problem.

Error 63: Extended error

This error code is used to indicate that an extended error code is in register pair HL.
The @ERROR routine will display "** Extended error, HL = X'nnnn'" if called with error-
63.

8-14

8.5 HEADER PROTOCOL OF MEMORY MODULES
A module of code can be relocated into high memory so that it's last byte is positioned
at the value returned from the @HIGH$ SuperVisor Call. The module is then protected from
being overwritten by other modules by adjusting HIGH$ to point to the address preceding
the start of the module. Modules relocated and protected in this manner, must include a
standard header that identifies the module. Modules placed into the low memory I/O driver
region also must adhere to this standard. The header is used by the system to accomplish
a number of important functions. First, it provides a locatable storage region for
pointers used in the device independent library operations. Second, it provides a name
string used by the @GTMOD SuperVisor Call to locate a specific module. Other data
contained in the header provides the information needed to identify the entry address of
each module so protected.

The following code describes this standard header:

 ENTRY JR BEGIN ;Branch around linkage
 STUFHI DW $-$;To contain last byte used
 DB MODDCB-ENTRY-5 ;Calculate length of 'NAME'
 DB 'MODNAME' ;Name of this module
 MODDCB DW $-$;To contain DCB pointer for module
 DW 0 ;Reserved by the DOS
 ;*=*=*
 ; Area that can be used to store data
 ;*=*=*
 .
 BEGIN EQU $
 ;*=*=*
 ; Actual module code start
 ;*=*=*

Let's examine this module header line by line so that you gain an understanding of its
purpose. At the label "ENTRY", the header always will have a relative jump instruction.
The operand of the jump will almost always reference the starting address of your module.
An exception to this would occur if the data area was extensive so that it placed the
label "BEGIN" beyond the range of the jump relative instruction. If such was the case,
you must provide an absolute jump (JP) instruction just prior to the data area. The
address of this instruction will then be used as a reference in the operand field of the
ENTRY jump relative.

It is also possible that the "module" is not a program but rather a data area that you
have reserved. This data area must still have a memory header; however, since there
exists no BEGIN address, it is recommended that you reference the operand of the ENTRY
jump relative instruction so that it jumps to ENTRY (i.e. jumps to itself). This is the
second exception.

The 2-byte storage region identified by the label STUFHI must be loaded with a value
equal to the last memory address used by the module. The program routine that relocates
the module into its memory position is responsible for loading this value. The system's
@GTMOD routine uses the value to be able to branch sequentially from module to module. If
the module is placed into high memory, this address value is the value returned by
@HIGH$.

The next two fields of the header are the name LENGTH and NAME fields. The NAME field
will contain the module's name as assigned by the programmer. This is the name string
that is used in the @GTMOD SuperVisor Call to locate the module. The name must range from
<1-15> characters in length and cannot have any character value below X'20'. The length
of the name is then placed into bit positions 0-3 of the LENGTH field. The system uses
the length value to determine how many characters must be matched in the NAME field. Bits
4-7 of the LENGTH byte are reserved by the operating system.

8-15

If the module is a device driver or filter, then it was assigned a Device Control Block
when the driver or filter was invoked with the SET command. The SET command passes a
pointer to this DCB in register pair DE when the initializing program first executes. It
is the responsibility of the initializing program to load the DCB pointer into the 2-byte
MODDCB storage field. The system requires this pointer for proper operation of its
character I/O device chains.

The last 2-byte field is loaded with a binary zero. It's use is reserved by the operating
system. You may conveniently use the memory region after this address for the storage of
any data. Thus, the pointer returned from a successful @GTMOD search for the module will
be easily used to index the data area.

8.6 INTERRUPT TASK PROCESSOR INTERFACING
The operating system is designed to function on hardware that can provide a maskable
interrupt (mode 1). This interrupt can be generated either by a standard Clock Timer Chip
(CTC) or it can be derived by other clocking methods (synchronized to the AC line
frequency or decoded from some other frequency generator). An operating system Task
Processor (TP) manages this interrupt to perform background tasks neccessary to perform
specific functions of the DOS (such as the time clock where a hardware clock is not
provided, blinking cursor where a CRTC blinking cursor is not provided, etc.).

The TP provides twelve individual TASK SLOTS that are executed on a "time-sharing" basis.
The interrupt rate is software divided into three different timing groups spread across
the task slots. One of these task slots is considered "high priority" and functions
approximately 60 times a second (the exact time period depends on the interrupt rate
provided). Three are considered "medium priority" and execute 30 times a second. The
remaining eight are considered "low priority" and execute at a rate of 30/8 times a
second (or 15 times every four seconds). The task task slots are numbered 0-11 with 0-7
being "low priority" tasks, 8-10 being "medium priority" tasks, and 11 being a "high
priority" task.

The DOS maintains a Task Control Block Vector Table (TCBVT) which contains 12 vectors -
one for each of the 12 possible task slots numbered from zero through eleven. Five system
SuperVisor Calls that manage the task vectors are provided. These and their functions
are:

@CKTSK = Check if a task slot is unused or active
@ADTSK = Add a task to the TCBVT
@RMTSK = Remove a task from the TCBVT
@KLTSK = Remove the currently executing task
@RPTSK = Replace the TCB address for the current task

The next point must be completely understood since it has caused confusion to many
attempting to learn how to interface to the TP. The Task Control Block Vector Table
(TCBVT) contains vector pointers. The TCBVT vectors POINT TO A 16-BIT LOCATION IN MEMORY
WHICH CONTAINS THE ADDRESS OF THE SERVICING ROUTINE. Thus, the tasks themselves are twice
indirectly addressed (those programmers familiar with C will observe that the TCBVT is an
array of pointers to pointers). Make sure you keep this in mind! When you program an
interrupt service routine, the entry point of the routine needs to be stored in memory.
If we call this storage location the beginning of a Task Control Block (TCB), the reason
for the indirect method of addressing interrupt tasks will become more clear. Let's
illustrate an example TCB.

MYTCB DW MYTASK
COUNTER DB 15
TEMPY DS 1
MYTASK RET

8-16

This is obviously an extremely useless task since all it does is return from the
interrupt. However, note that a TCB location has been defined as "MYTCB" and this
location contains the address of the task. A few more data bytes immediately following
the task address storage have also been defined. Upon entry to an interrupt task service
routine, index register "IX" will contain the address of the TCB. You, therefore, can
address any TCB data using index instructions as in "DEC (IX+2)" which will decrement the
value contained in "COUNTER". Let's expand the routine slightly.

 MYTCB DW MYTASK
 COUNTER DB 15
 TEMPY DB 0
 MYTASK DEC (IX+2)
 RET NZ
 LD (IX+2),15
 RET

Here we have made use of the counter. Each time the task executes, the counter is
decremented. When the count reaches zero, the counter is restored to its original value.
This task still is pretty worthless for its function except for its illustration of data
referencing. The big question is how does this task get added to the Task Control Block
Vector Table (TCBVT)? We use the @ADTSK SuperVisor Call for that. Assuming we have
decided that the task will be low priority, we must locate an unused low-priority task
slot. We can see if slot 2 is available for use by invoking the @CKTSK SVC as follows:

 LD C,2 ;Reference slot 2
 LD A,@CKTSK ;Identify the SVC
 RST 40 ;An "NZ" indication
 JP NZ,INUSE ; says that the slot
 ; is being used.

Once you ascertain that the slot is available (i.e. not being used by some other task),
you can add your task routine. The following code will add such a task to the TCBVT:

 LD DE,MYTCB ;Point to the TCB
 LD C,2 ;Reference slot 2
 LD A,@ADTSK ;Identify the SVC
 RST 40 ;Issue the service call

We just point register "DE" to the TCB, load the task slot number into register C, then
issue the @ADTSK SuperVisor Call. The task, most likely, would have been placed into high
memory and protected by adjusting HIGH$ via the @HIGH$ SuperVisor call. The DOS has been
designed to make specific use of bank-switched memory. The system's Task Processor will
always enable bank zero when the TP takes control to perform background tasks. It
restores the previously resident bank when it completes. This ensures that a single
memory bank will consistently be available in high memory during interrupt task
processing. In order to properly control and manage this additional memory, certain
restrictions have been placed on tasks. Any and all tasks must be placed in either low
memory (address X'0000' through X'7FFF') or in bank zero of high memory (address X'8000'
through X'FFFF'). It is up to the assembly language programmer to ensure that tasks are
placed in the correct memory area.

Once a task has been activated, it is sometimes necessary to deactivate it. This can be
done in two ways. The most often way is to use the @RMTSK SuperVisor Call in the
following manner:

 LD C,2 ;Designate the task slot
 LD A,@RMTSK ;Identify the SVC
 RST 40 ;Invoke the service call

8-17

What could be more simple? We identify what task slot to remove by the value placed into
register C, then issue the supervisor call. Another method can be used if we want to
remove the task WHILE WE ARE EXECUTING IT. Consider the routine modified as follows:

 MYTCB DW MYTASK
 COUNTER DB 10
 TEMPY DB 0
 MYTASK DEC (IX+2)
 RET NZ
 LD A,@KLTSK ;Identify the SVC
 RST 40 ;Invoke the service call

The @KLTSK service routine will remove the currently executing task. Since this task is
currently executing, it is the one that gets removed from the TCBVT table. The system
will not return to your routine but will continue as if you had executed an "RET"
instruction. Therefore, the "@KLTSK" SuperVisor Call should be the last instruction you
want executed. In this example, MYTASK will decrement the counter by one on each entry to
the task. When the counter reaches zero, the task will be removed from slot 2 (remember
it was placed in slot 2).

One additional TP SuperVisor Call is @RPTSK. The function is easy to say in words;
however, its function is best illustrated. The @RPTSK function will update the TCB
storage vector (the vector address in your task control block) to be the address
immediately following the @RPTSK SVC instruction. This is also another case where the
system will NOT return to your task routine after the SVC is made but rather continues on
with the TP. To illustrate how this TP function is used in a program, the final example
should be examined:

First, let's point out that this task routine contains no method of relocating it to
protected RAM. The statements starting at label, BEGIN, add the task to TCBVT slot zero
(without checking for its availability) and return to DOS Ready. The task contains a four
second down counter and a routine to put a character in video RAM (80th character of row
0). At four second intervals, the character toggles between '|' and '-'. The toggling is
achieved by toggling the execution of two separate routines which perform the character
display. Use is made of the @RPTSK TP call to implement the routine toggling. Examine
this task closely to ascertain the functioning of @RPTSK.

 BEGIN LD DE,TCB ;Point to TCB & add the
 LD C,0 ; task to slot 0
 LD A,@ADTSK
 RST 40
 LD A,@EXIT ;Exit to DOS
 RST 40
 TCB DW TASK
 COUNTER DB 15
 TASKA LD A,@RPTSK ;Replace current
 RST 40 ; task with TASKA
 TASK LD BC,2<8.OR.'|' ;Put a '|' character
 LD HL,0<8.OR.79 ; at Row 0, Col 79
 LD A,@VDCTL
 RST 40
 DEC (IX+2) ;Decrement the counter
 RET NZ ; & return if not
 LD (IX+2),15 ; expired else reset
 LD A,@RPTSK ;Replace the previous
 RST 40 ; task with TASKB
 TASKB LD BC,2<8.OR.'-' ;Put a '-' character
 LD HL,0<8.OR.79 ; at Row 0, Col 79
 LD A,@VDCTL
 RST 40
 DEC (IX+2)
 RET NZ

8-18

 LD (IX+2),15
 JR TASKA

By firmly understanding the functions of each of the TP SuperVisor Calls discussed, you
will be proficient at integrating interrupt tasks into your applications. A final note is
to be aware of the task slots already used by the DOS or other applications. Use @CKTSK
to find an unused task slot.

8.7 LOW MEMORY DETAILS
The author thought long and hard concerning the inclusion of this section of the
Appendix. Why is this section a problem? The Version 6 operating system was designed to
promote the development of portable software. The term, portable, means not only should
the software function from machine to machine, it should also function under each release
of the DOS. The DOS needs access to the storage of data for internal system use. Trying
to keep the memory locations of this data constant across all implementations of the
system is quite restrictive and usually becomes limiting to the healthy growth of the
system. Keeping portability in mind, the designers of the system have provided SuperVisor
Calls which return pointers to data that may be useful to a program. Thus, there should
usually be no need to access data areas by memory address. We say "usually" since it is
possible that user's of the system are writing machine-dependent SYSTEM code. This is the
only reason that the Appendix contains this section. It is recognized that once a data
address is known, application programmers tend to use it. RESIST THE IMPULSE. If the
system does not provide via an SVC, data that you think you need, perhaps you don't
really need the data. It is entirely possible that the information you need is actually
available via an SVC, although not entirely obvious. Remember, when you bypass the SVC
structure of the DOS, you most certainly risk portability!

With the preceding discussion in mind, let's first take a look at the general uses of
each low core memory page.

Sector Page General Contents
n/a 0 RST vectors, Flag tables, misc...
n/a 1 SuperVisor Call Table
0 2 Bank data, 31 Device Control Blocks
1 3 System stack area, Miscellaneous machine dependent routines.
2 4 System Information data, Drive Control Table, Input buffer.
3 5 Start of I/O handling and drivers. Extends to end of page

12H.

The low core area starting at memory page two is actually loaded by and from the
BOOT/SYS. The system uses the first two sectors to contain BOOT code needed to bring up
the system. A booting ROM reads either the first or second sector of track 0 - the BOOT
track. This sector contains code which, in turn, reads the entire BOOT/SYS file.
Thereafter, BOOT loads the resident system file, SYS0/SYS, and transfers control to it.
Because of this process, part of low memory is loaded directly from the BOOT/SYS file
contained on track 0 while other parts of low memory are loaded by SYS0/SYS. A
description of the booting process and the boot track is contained in another section of
the Appendix. Let's now look at some of the details of low memory. REMEMBER THAT THIS
INFORMATION IS PROVIDED FOR USE ONLY IN EXTREME NON-PORTABLE SITUATIONS!

An asterisk following the page byte(s) indicates a quantity that can be obtained from the
system via some SuperVisor Call. A pound sign indicates that the address is fixed due to
processor assignment.

8-19

8.7.1 Details of Low Memory Page 0

Bytes Use
00-02# RST 00 - Reserved for system use
03-04 reserved
05-07 reserved
08-0A# RST 08 - Available to applications
0B-0C SVCRET$- Return address from SVC invocation
0D LSVC$ - Last SVC invoked
0E-0F FDDINT$- Used by FDC driver for SYSTEM (SMOOTH)
10-12# RST 16 - Available to applications
13-17 USTOR$ - User application storage area
18-1A# RST 24 - Available to applications
1B PDRV$ - Physical address of current drive
1C-1D PHIGH$ - Physical high memory
1E-1F* LOW$ - Lowest usable address of high memory
20-22# RST 32 - Available to applications
23 LDRV$ - Logical address of current drive
24-25 JDCB$ - Saved FCB pointer
26-27 JRET$ - Saved I/O return address
28-2A# RST 40 - System SVC call
2B TIMSL$ - Time slice counter
2C* TIMER$ - RTC counter [always precedes TIME$]
2D-2F* TIME$ - Time string storage area
30-32# RST 48 - DEBUG call address
33-37* DATE$ - Date string storage
38-3A# RST 56 - Maskable interrupt vector
3B* OSRLS$ - DOS release number
3C INTIM$ - Interrupt latch image
3D INTMSK$ - Mask for INTIM$
3E-4D INTVC$ - Table of 8 interrupt latch vectors
4E-65* TCBVT$ - Table of 12 interrupt task vectors
66-68# NMIVCT - Non-maskable interrupt vector
69* OVRLY$ - Current system overlay resident
6A-83* FLAGS$ - 26 system flags [A-Z] in order
84* SVCTP$ - SVC table hi-order byte pointer
85* OSVER$ - Operating system version
86-88* @ICNFG - Initialization configuration vector
89-8B* @KITSK - Keyboard task vector
8C-9F SFCB$ - System file control block
A0-BF DBGSV$ - DEBUG register save area
C0-DF JFCB$ - JCL File Control Block
E0-FF CFCB$ - Comand interpreter File Control Block

8.7.2 Details of Low Memory Page 1

Bytes Use
00-FF* SVCTAB$ - 128 vectors for SVC's 0-127

8-20

8.7.3 Details of Low Memory Page 2

Bytes Use
00* BUR$ - Bank Used RAM image
01* BAR$ - Bank available RAM image
02* LBANK$ - Currently resident RAM bank
03-05 JCLCB$ - Mini DCB for JCL line input
06-07* DVRHI$ - First available byte in I/O driver region
08-0F* KIDCB$ - Keyboard Input Device Control Block
10-17* DODCB$ - Video Device Control Block
18-1F* PRDCB$ - Printer Device Control Block
20-27* SIDCB$ - Standard Input Device Control Block
38-2F* SODCB$ - Standard Output Device Control Block
30-37* JLDCB$ - Job Log Device Control Block
38-FF* spare DCBs [25 of them]

8.7.4 Details of Low Memory Page 4

Bytes Use
00 reserved
01 ZERO$ - set to X'00'
02-0D MAXDAY$- [31,28,31,30,31,30,31,31,30,31,30,31]
0E-0F* HIGH$ - Highest free address in user RAM
10-1F reserved
20-6F* INBUF$ - Command line input buffer
70-BF* DCT$ - Drive Control Table records
C0-C6 reserved for use by system
C7-DB DAYTBL - Days of the week [SunMon...]
DC-FF MONTBL$- Months of the year [JanFeb...]

8-21

8.8 MEMORY BANK SWITCHING
This section discusses the techniques of using the @BANK SuperVisor Call. The control of
an assembly-coded application operating in a memory banked environment requires a high
degree of skill in assembly language coding and should not be undertaken by the novice.
The professional is advised to carefully read the information contained in this section
which discusses how bank switching is supported within the operating system.

The DOS can support eight multiple RAM banks of 32K each in addition to a resident 32K
bank. This brings the total RAM configuration to 288K. The non-resident RAM banks are
designated as banks zero through seven. The 32K of bank zero (generally considered as
"high memory") and the resident 32K are considered the standard 64K of the DOS. Banks one
through seven may be used for buffers or data storage. Through sophisticated techniques,
they can even be used to store executable code. An entire bank is reserved for a
particular function. The system maintains a pointer (HIGH$) for bank 0 only. At any one
time, only one of the banks are resident. All are imaged at address X'8000' through
X'FFFF'. When a bank transfer is performed, the specified bank becomes addressable and
the previous bank is no longer available. Since memory refresh is performed on all banks,
nothing in the previously resident bank is altered during whatever time it is not
addressable (i.e. not resident).

The DOS provides support in accessing this additional RAM by means of the @BANK
SuperVisor Call (SVC-102). Let's take a look at how this RAM is handled. When the
operating system is booted, it examines what banks of RAM are installed in the machine.
The DOS maintains a byte bit-map with each bit representing one of the banks of RAM. This
byte is called "Bank Available RAM" (BAR), and its information is set when the DOS is
booted. BAR bit-0 corresponds to bank 0, BAR bit-1 corresponds to bank 1, and so on to
BAR bit-7 corresponding to bank 7. A machine may have only one bank, bank 0.

Another byte bit-map is used to indicate whether a bank is reserved or available for use.
This byte is designated the "Bank Used RAM" (BUR). Again, a bit assignment corresponds
one-for-one with the bank number. The management of any memory space within a particular
bank of RAM (excluding bank 0) is the sole responsibility of the application program
"reserving" a particular bank.

The DOS I/O device handler will always enable bank 0 upon execution of any character I/O
service request (@PUT, @GET, @CTL, as well as those other character I/O SVCs that use
@PUT/@GET/@CTL). The DOS also enables bank 0 at the initial entry to the task processor
and when a disk I/O communications function is requested. This requires that any device
driver or filter that is relocated to high memory (X'8000'-X'FFFF') must reside in bank
0. The same holds true for interrupt task routines and disk drivers/filters. The system
provides this restriction to make sure that any filter, driver, or task routine that
control passes to will be occupying enabled RAM memory. If a RAM bank other than 0 was
resident during these operations, it would be restored upon return from the
device/drive/task handler. The limitation will ensure that device I/O, task processing,
and disk I/O will never be impacted due to bank switching of RAM by an application.

Another restriction requires that the stack pointer (SP) is not pointing to an adddress
above X'7FFE' when a bank transfer is requested. This is because that stack range would
have placed the stack in the memory region that is being swapped thereby making the stack
contents erroneous. The @BANK SVC will inhibit the request and return an "SVC parameter
error" if this condition is violated. It is acceptable for an interrupt task, filter
module, or driver that is located in the bank switched address range to perform a bank
transfer to another bank provided the necessary linkage and stack area is being utilized.
This will be discussed later in more detail.

All bank transfer requests must be performed using the @BANK SVC. This SVC provides five
functions - four of which are interogatory in nature. One of the functions performs

8-22

actual bank switching. As previously discussed, the contents of banks other than 0 are
managed by the application - not the DOS. Therefore, the application first needs a way of
ascertaining the availability of any given bank. For instance, if an application wants to
reserve use of bank 1, it must first check if bank 1 is free to use. This is achieved by
using function 2 as follows:

 LD C,1 ;Specify the bank #
 LD B,2 ;Ck BUR if bank-in-use
 LD A,@BANK ;Identify the SVC
 RST 40
 JR NZ,INUSE ;NZ if in use already

Astute programmers will recognize that the first two instructions could be combined to
form one instruction as:

 LD BC,2<8.OR.1

and save one-byte of code; however, for the sake of clarity in denoting the @BANK
function codes, all remaining illustrations will use distinct instructions. Note that the
return condition (NZ or Z) is entirely satisfactory for ascertaining whether or not you
can use the specified bank or if it is not available for use. The accumulator contains no
error code.

If you gain the availability of a specified bank, you then need to reserve it. This is
done by using function 3 as follows:

 LD C,1 ;Specify bank-1
 LD B,3 ;Set BUR to show in-use
 LD A,@BANK ;Identify the SVC
 RST 40
 JR NZ,ERROR

You must check for an error by examining the Z-flag. In general, discounting a system
error, an NZ condition returned means that the specified bank is already in use. In fact,
if you had validly performed a function 2 (testing if the bank was available) and
obtained a "not-in-use" indication but obtained an NZ condition on function 3, the @BANK
SVC service routine has been altered and is most likely unusable.

Before actual bank switching is explained, let's look at one more function. When an
application no longer requires a memory bank, it can return the bank to a "free" state by
means of function 1. This is coded as follows:

 LD C,1 ;Specify bank-1
 LD B,1 ;Set BUR to show free
 LD A,@BANK ;Identify the SVC
 RST 40

No return code condition is checked as none is supplied by the DOS. In the unlikely event
that you mistakenly invoke function 1 with a bank that is non-existent, you will still
get an error if you try to later enable the non-existent bank.

If you need to ascertain what bank is resident at any point in time, use function 4 as
follows:

 LD B,4 ;What bank's resident?
 LD A,@BANK ;Identify the SVC
 RST 40

The current bank number will be returned in the accumulator. This information may be
useful prior to installing a driver/filter/task module into bank 0.

8-23

The more complex bank function is function 0. This request is used to actually exchange
the current bank with the specified bank. A very important point to remember here is that
since a memory transfer will take place in the address range X'8000' to X'FFFF', the
transfer cannot proceed correctly if the stack pointer (SP) contains a value that places
the stack in that range. In fact, @BANK will inhibit function 0 and return an SVC
parameter error if the stack pointer violates the condition.

A bank can be used purely as a data storage buffer. Most likely, the application's
routines for invoking and indexing the bank switching will reside in the user range
X'3000' through X'7FFF' (or possibly in the I/O driver range). As an example
illustration, the following code will invoke a previously tested and reserved bank (via
functions 2 and 3), access the buffer, and then restore the previous bank:

 LD C,1 ;Specify bank-1
 LD B,0 ;Bring up bank
 LD A,@BANK ;Identify the SVC
 RST 40
 JR NZ,ERROR ;Whatever error trap
 PUSH BC ;Save old bank data
 .
 your code to access the buffer region
 .
 POP BC ;Recover old bank data
 LD A,@BANK ;Identify the SVC
 RST 40
 JR NZ,ERROR ;Whatever error trap

Note that the @BANK function 0 conveniently returns a zero in register B to effect a
function 0 later, as well as provides the old bank number in register C. This means that
you only have to save register pair BC, pop it when you want to restore the previous
bank, and then issue the @BANK SVC.

Say you have a need to transfer to another bank from a routine that is executing in high
memory. Can this be done? Notice that the only limitation discussed was that the stack
must not be in high memory. The @BANK SVC function 0 does provide a technique for
automatically transferring to an address in the new bank. This technique is termed the
transfer function. It relies on the assumption that since you are managing the 32K bank,
your application should know exactly where it needs to transfer (i.e. where the
application originally placed the code to execute). The code to perform a bank transfer
is similar to the above. Register pair HL must be loaded with the transfer address,
Register C, which contains the bank number to invoke, must have its high order (bit-7)
set to indicate the TRANSFER activity. After the specified bank is enabled, control is
passed to the transfer address that was in HL. Upon entry to your routine in the new bank
(we will refer to it as "PROGRAM-B"), register HL will contain the old RETurn address so
that PROGRAM-B will know where to return to when it transfers. Register C will also
contain the old bank number with bit-7 set and register B will contain a zero. This
register setup will provide for an easy return to the routine in the old bank that
invoked the bank transfer. An illustration of the transfer code is as follows:

 LD C,1 ;Specify bank-1
 LD B,0 ;Bring up bank 0
 LD HL,(TRAADR) ;Set the transfer address
 SET 7,C ; & denote a transfer
 LD A,@BANK ;Identify the SVC
 RST 40
 RETADR JR NZ,ERROR

Control will be returned to "RETADR" under either of two conditions. If there was an
error in executing the bank transfer (for instance an invalid bank number or the stack
pointer being in high memory), the returned condition will be NZ. If the transfer took
place and PROGRAM-B transferred back, the returned condition will always have the Z-flag

8-24

set. Thus, the Z-flag will be indicative of a problem in effecting the transfer. If, by
chance, PROGRAM-B needs to provide a return code, it must be done by using register pair
DE, IX, or IY, as registers AF, BC, and HL are used to perform the transfer (or some
other technique such as altering the return transfer address to a known error trapping
routine).

PROGRAM-B should contain code that is very similar to that shown earlier. For example,
PROGRAM-B could be:

 PROGB PUSH BC ;Save old bank data
 PUSH HL ;Save the RET address
 .
 your PROGRAM-B routines
 .
 POP HL ;Recover transfer address
 POP BC ;Get bank transfer data
 LD A,@BANK ;Identify the SVC
 RST 40
 JR NZ,ERROR ;Whatever error trap

PROGRAM-B saves the bank data (register BC). Don't forget that a transfer was effected
and register C has bit-7 already set when PROGRAM-B is entered.

PROGRAM-B also saves the address it needs to transfer back (which is in HL). It then
performs whatever routines it has been coded for, recovers the transfer data, and issues
the bank transfer request. As explained earlier, an NZ return condition from the @BANK
SVC indicates that the bank transfer was not performed. A recommendation is to verify
that your application has not violated the integrity of the stack where the transfer data
was stored.

Never place disk drivers, device drivers, device filters, or interrupt task service
routines in banks other than bank-0. It is possible to segment one of the above modules
and place segments in banks 1 through 7 provided the segment containing the primary entry
is placed in bank 0. All three types of divisions are incorporated into the system's
spooler with transfer between segments being accomplished by the bank transfer techniques
discussed above.

It sometimes is necessary to transfer a page of memory from one bank to another. This can
only be done in one of two ways. Either a character(s) at a time is passed in a
register(s) or a page buffer below X'8000' is used. The system uses the last page of the
system overlay region (X'2300'-X'23FF') as an overlay buffer (except for SYS5/SYS which
loads into the region). This buffer is generally available for use as a page transfer
buffer. Do not use this location if your memory transfer routine is a background task or
is using the RAM bank as a disk cache buffer.

8.9 INTERFACING TO @KITSK
Consider for a moment that disk I/O can not take place during an interrupt task. How then
can we write "background" routines that perform disk I/O? The system printer spooler does
its despooling function as a background task. If we cannot perform disk I/O during
interrupt tasks, how can we despool? We achieve this by being able to invoke a background
task in a way that does not depend on the interrupt task processor. A function frequently
requested in almost every application is that of obtaining characters from the keyboard.
If we can "hook into" this keyboard request, we can execute a task every time the
keyboard is scanned. For those tasks that require disk I/O, we can make use of this
keyboard task process.

At the beginning of the system keyboard driver code is a call to @KITSK. This means that
any time that @KBD is called, the @KITSK vector is likewise called (actually, the type-

8-25

ahead interrupt task bypasses this entry to inhibit calling @KITSK from the interrupt
routine). Therefore, if you want to interface a background routine that does disk I/O,
you must chain into @KITSK

The interfacing procedure to @KITSK is virtually identical to that shown for Boot
Initialization ICNFG Interfacing (except that FLAGS+31 through FLAGS+33 is used to
reference the @KITSK vector) and will not be repeated here. For the sake of clarity, you
may want to write your background routine to start with:

 START CALL ROUTINE ;Invoke task
 LINK DB 'Roy' ;For @KITSK hook
 ROUTINE EQU $;Start of the task
 .
 RET

Now that the procedure has been demonstrated, be aware of one major pitfall. The @KBD
routine is invoked from @CMNDI and @CMNDR which is in SYS1/SYS. This invocation is from
the @KEYIN call which fetches the next command line after issuing the "DOS Ready"
message. If your background task executes and opens or closes a file (or does anything to
cause the execution of a system overlay other than SYS1), then SYS1 will be overwritten
by that system module handling your request). When your routine finishes, the @KEYIN
handler returns to what called it - which was SYS1. Unfortunately, SYS1 is no longer
resident. You have just crashed the system!

ANY TASK CHAINED TO @KITSK WHICH CAUSES
A RESIDENT SYS1 TO BE OVERWRITTEN MUST

RELOAD SYS1 PRIOR TO RETURNING.

Okay, how do you accomplish this without knowing system code (point of information: if
you are writing background tasks, you are writing system support code!)? You will be able
to use the following code to reload SYS1 if SYS1 was resident prior to your task's
execution.

 ROUTINE LD A,@FLAGS ;Get flags pointer
 RST 40 ; into register IY
 LD A,(IY-1) ;P/u resident over-
 AND 8FH ; lay and remove
 LD (OLDSYS+1),A ; the entry code
 .
 Rest of your task
 .
 EXIT EQU $
 OLDSYS LD A,0 ;P/u old overlay #
 CP 83H ;Was it SYS1?
 RET NZ ;Return if not else
 RST 40 ;Get SYS1 per reg A
 ; (no RET needed)

Another method is to determine if the keyboard request originated from the command
interpreter. While the command interpreter is fetching its command line via @KEYIN , it
sets bit-2 in the CFLAG$ (see @FLAGS SuperVisor Call). Thus, if your KITSK routine
discovers that bit set, then the command interpreter originated the line input. If you
cause the system to load some other overlay into the system overlay region, it is your
responsibility to restore SYS1!

8-26

8.10 SYSTEM DISK BOOT TRACK
The operating system goes through a complicated process to bring itself to a "ready"
state. This process is known as BOOTING. All implementations of the DOS require that the
machine contain a small routine in Read Only Memory called the BOOT ROM. The operating
system uses the first two sectors of track zero of the system disk to contain BOOT code
needed to bring up the system. The BOOT ROM has the small job of reading either the first
or second sector of track zero, the BOOT track. The track contains a core-image file
called BOOT/SYS. The sector that is read contains code which, in turn, reads the entire
BOOT/SYS file into low memory starting at memory page 2. The BOOT/SYS file occupies 16
sectors of track zero. Thereafter, BOOT/SYS loads the resident system file, SYS0/SYS, and
transfers control to it. SYS0/SYS contains additional code which performs further system
initialization. This includes loading the first two pages of memory (page 0 and page 1),
loading any system configuration file (CONFIG/SYS), and executing any AUTO command.
Because of this process, part of low memory is loaded directly from the BOOT/SYS file
contained on track 0 while other parts of low memory are loaded by SYS0/SYS.

The BOOT/SYS file contains two things of limited importance to programmers. First,
BOOT/SYS contains a pointer to the cylinder which holds the disk's directory . Second, the
BOOT/SYS contains system information in one of its sectors called the SYSTEM INFORMATION
SECTOR. It is necessary to discuss only these two items.

The DIRECTORY CYLINDER POINTER is a one-byte pointer that exists as the third byte of
both sector zero and sector one. Both locations store this information in order to be
media compatible across various implementations of the operating system. Hard disk
formatters that perform their own initialization of the directory cylinder must store the
logical cylinder number of the directory in these two pointers. The pointer is the only
byte of the first two sectors that requires attention.

The SYStem INFOrmation sector (SYSINFO) is sector two of track zero. It contains various
pieces of system information as follows:

Bytes Use
00 Operating system version used when formatting the disk. This number is in

hexadecimal (i.e. X'60', X'61', etc...)
01 Configuration byte to specify if a booting disk contains a CONFIG/SYS

file [X'C9'=NO, X'00'=YES]
02-1D MAXDAY$ [31,28,31,30,31,30,31,31,30,31,30,31]
0E-0F reserved
10-17 Disk Pack name - same as in Granule Allocation Table
18-1F Disk Pack date - same as in Granule Allocation Table
20-6F 80-character storage area for the AUTO command. This means that the AUTO

command buffer on the disk loads directly into INBUF$ by the BOOT loader.
70-BF Drive Control Table (DCT) records.
C0 Disk type (system=X'FF', data=X'00')
C1 reserved
C2 System BOOT date prompting [X'00'=YES, X'FF'=NO]
C3 System BOOT time prompting [X'00'=YES, X'FF'=NO]
C4 System BOOT floppy disk restores [X'00=NO, X'FF'=YES]
C5 reserved
C6 reserved
C7-DB Days of the week [SunMon...]
DC-FF Months of the year [JanFeb...]

8-27

8.11 SYSTEM OVERLAY CONTENTS
A system as complex and flexible as LDOS would occupy considerable memory space to be
able to provide all of its features. The DOS, however, makes extensive use of overlay
segments in order to minimize the amount of memory reserved for system use. The
compromize in using an overlay driven system, is that while a user's application is in
progress, certain disk file activities requested of the system may require the operating
system to load different overlays to satisfy the request. This could cause the system to
run slightly slower than a less sophisticated system which has more of its file access
routines always resident in memory. The system provides a procedure to permanently place
specified overlays into memory to enhance the overall speed of operation (see the SYSTEM
command).

The following will describe the functions performed by each system overlay. Numbers in
angle brackets represent the system SVC entry.

8.11.1 SYS0/SYS
This is not an overlay. It contains the resident part of the operating system (SYSRES).

8.11.2 SYS1/SYS
This overlay contains the command interpreter. This processes @CMNDI <X'B3'> and @CMNDR
<X'A3'>. It contains the routines for processing the @FEXT SVC <X'D3'>, the routines for
processing the @FSPEC SVC <X'C3'>, and the routines for processing the @PARAM SVC
<X'E3'>. It also contains the @EXIT processor <X'93'>.

8.11.3 SYS2/SYS
This overlay is used for opening <X'94'> or initializing <X'A4'> disk files and logical
devices. It contains the functions for @RENAM <X'F4'> and @GTDCB <X'B4'>. It also
contains the @CKDRV routines <X'C4'>, and routines for hashing file specifications
<X'D4'> and passwords <X'E4'>.

8.11.4 SYS3/SYS
This overlay contains all of the system routines needed to close files and devices
<X'95'>. It also contains the routines needed to service the @FNAME SVC <X'A5'>.

8.11.5 SYS4/SYS
This system overlay contains the system error dictionary and @ERROR SVC processing
routines.

8.11.6 SYS5/SYS
This overlay contains the system debugger.

8.11.7 SYS6/SYS
This overlay contains all of the algorithms and routines necessary to service the LIBrary
commands identified as "Library A" by the LIB command. The following list identifies the
commands and their ISAM entry number.

 21 DIR 63 RESET 53 RENAME
 61 DEVICE 65 SET 1E MEMORY
 32 COPY 66 FILTER 91 DO
 31 APPEND 41 LIST 81 LOAD
 64 ROUTE 18 REMOVE 82 RUN
 62 LINK 19 LIB

8.11.8 SYS7/SYS
This overlay contains all of the algorithms and routines necessary to service the LIBrary
commands identified as "Library B" by the LIB command. The following list identifies the
commands and their ISAM entry number.

8-28

 14 DEBUG 72 PURGE
 1B VERIFY 71 DUMP
 15 DATE 13 CREATE
 16 TIME 11 AUTO
 22 FREE 33 BUILD
 51 ATTRIB

8.11.9 SYS8/SYS
This overlay contains all of the algorithms and routines necessary to service the LIBrary
commands identified as "Library C" by the LIB command. The following list identifies the
commands and their ISAM entry number.

 A1 SYSTEM
 1C SYSGEN
 B1 FORMS
 B2 SETCOM
 B3 SETKI
 A2 SPOOL

8.11.10 SYS9/SYS
This overlay contains the routines necessary to service the EXTended debugging commands
available after a DEBUG (EXT) is performed.

8.11.11 SYS10/SYS
This system overlay contains the procedures necessary to service the request to REMOVE a
file <X'9C'>.

8.11.12 SYS11/SYS
This overlay contains all of the procedures necessary to perform the Job Control Language
execution phase. These are the initial entry for setup and initialization <X'9D'>, the
revised @EXIT processor <X'AD'>, keyboard request processing <X'CD'>, and //INPUT
keyboard processing <X'DD'>.

8.11.13 SYS12/SYS
This overlay contains the routines to service the @RAMDIR <X'9E'> and the @DODIR <X'AE'>
SuperVisor Calls. It also includes the routines to service the @GTMOD function <X'BE'>.

8.11.14 SYS13/SYS
Effective with release 6.2.0, SYS13 can be used by an application environment for an
Extended Command Interpreter (ECI). This ECI gains control from SYS1 on any of the
following SVCs: @ABORT, @CMNDI, @CMNDR, and @EXIT. The programmer develops the ECI and
copies it to the application system disk SYS13/SYS module via the command:

COPY usereci SYS13/SYS.LSIDOS:d (C=N)

The programmer then sets the EFLAG$ and invokes SYSGEN to save the EFLAG$ configuration.
Upon entry to the ECI, the registers will be set as for any other program execution (see
page 6-100), with the exception of register A. Bits 4-6 of the accumulator will contain
an image of the respective EFLAG$ bits. The ECI programmer may use different EFLAG$
assignments in a multiple module application environment to invoke the ECI with different
entry points.

8-29

8.12 SYSTEM OVERLAY ACCESS
Practically all of the functions contained in the system overlays are accessed via
library commands or standard SuperVisor Calls. Only in a few unique cases is access to
overlay functions through the SYSTEM SVC required. The two cases, calculating the file
specification hash code and the password string hash code, have been discussed. The
system functions provided in the overlays will usually have a standard SuperVisor Call
assigned. These SVCs have been discussed in chapter 7. The system translates standard SVC
numbers <0-127> within SYSRES to the overlay entry number in order to process the user
request. Although it is possible to directly access a function via its overlay entry
number or ISAM entry number, this should not be done. The standard SVC linkage protocol
should be used to address the overlay functions since there is no guarantee that the
routines servicing the overlay functions will remain in the overlay presently assigned.

A user SVC request is via a RST 40 instruction which places the return address at the top
of the stack. Since the process to translate the user request to a system overlay request
also uses a RST instruction (to minimize the length of the translation code), an extra
return address is placed on the stack. The SVC processor adjusts for this by popping the
extraneous return address when it is processing a system overlay request. The system's
request is easily identifiable since all system request codes have bit-7 set. Because of
this, if a user requests a system overlay function directly, it is necessary to CALL the
RST instruction so that the return address that is kept on the stack is a pointer to the
address following the CALL instruction. System overlays one through five and nine through
thirteen, can be loaded into the overlay region by means of the following code:

 LD A,8<4.OR.#+2 ;The "#" represents the
 CALL RST40 ; number of the overlay
 .
 .
 RST40 RST 40 ;Returns to what called this

For a specific example, in order to load SYS3/SYS, the accumulator will be loaded with
the value, X'85'. When one of these overlays loads, the last two bytes of the system
overlay region will be loaded with the length of the overlay. This information is used by
the "SYSTEM (SYSRES)" command.

The library overlays, SYS6/SYS, SYS7/SYS, and SYS8/SYS, are partitioned data sets. The
system locates the origin of individual members by means of an ISAM directory. The
directory contains an entry number, a NRN-BYTE OFFSET pointer, and a transfer address
(this is discussed in the appendix section, DISK LOAD MODULE FORMAT). When the command
interpreter recognizes a library command request, it obtains the ISAM entry number from
its table and issues a system overlay request. The ISAM entry number is placed in
register B while the accumulator contains the corresponding overlay load code as
discussed in the preceding paragraph. Again, since it is possible for the members to be
located in a different overlay in the future, the proper method to invoke a library
overlay member is via an @CMNDR or @CMNDI SuperVisor Call.

8-30

8.13 USING @PARAM
The @PARAM SuperVisor Call is used in practically all DOS library commands and utilities
as well as filters, drivers, and languages. Since you are already familiar with the DOS
commands, you should recognize the wide range of input syntax parsed and interpreted by
@PARAM. The SVC is used to decode TRUE/FALSE parameters (by either entering or not
entering a parameter word), YES/NO parameters (by using PARM=Y or PARM=N), ON/OFF
parameters (by using PARM=ON or PARM=OFF), decimal values (by entering PARM=ddddd),
hexadecimal values (by entering PARM=X'xxxx'), and character string values (by entering
PARM="characterstring"). Parameter entries can be made in either upper case or lower case
- even with hexadecimal digits (A-F equally acceptable as a-f).

The system parses a complex parameter string that may be composed of many parameters -
each separated from the other by a comma. The interpreted entries are passed back to
@PARAM caller according to the parameter table designed by the programmer. Version 6
supports two types of parameter tables. The first type is the fixed width table which was
supported under Version 5.

The second type is a variable width table that supports additional information. In the
following discussions, we will first illustrate the former table. You should have already
read the information in chapter 7 covering the @PARAM SuperVisor Call.

Let's assume we have an application that offers the user varying options to set up the
function of the application. In BASIC, this may be the number of files or protected
memory size. In BACKUP, this may be the diskette master password or date range of files
to select. In SETCOM, this may be whether CTS is to be honored. How do we get this
information to the program? We could prompt the user by a prompt message for each and
every parameter that needs to be determined. Experienced users soon get tired of prompts.
Inexperienced users get extremely frustrated when the system requires an inflexible
syntax for the entry of options. How can everyone be satisfied - from novice to expert?
Why, by using @PARAM.

We will propose a hypothetical application requiring the determination of five options:

1. A length field used in ascertaining the number of print columns of output. This
should default to 80 to denote an 80 column printer if no entry is made. The
range should be limited to 32-255.

2. A module specification field to indicate whether line feeds are to be added
after carriage return, removed after carriage return, or no checking is to be
performed.

3. A title field to be placed on each page of output. In addition, paging is to be
suppressed if no titling is desired. Furthermore, the default is to incorporate
paging unless otherwise specified by the user.

4. A prompting specification to note whether prompts for changing paper are to be
made at the appropriate time if sheet paper is used or omitted if tractor feed
paper is used. The default should be no prompting.

5. A translation option for converting a character on output. This should default
to no translation.

The first thing required by the system designer is to designate "words" for the command
line parameters. They should be chosen to be as easily remembered as possible. They
should be greatly correlated in definition to the function they are specifying.
Additionally, abbreviations should be considered in addition to the full "word". Thought
should be given to using words whose first character is different for each parameter so
as to provide single character abbreviations. However, if any parameter is omnipotent,
care should be exercised in designating an abbreviation.

8-31

In the example above, we will choose LENGTH, FEED, TITLE, PROMPT, and XLATE parameter
words for the options 1-5. We will also abbreviate these as L, F, T, P, and X. Your
application's documentation must fully explain the purpose of the parameters. A typical
command line entry could be:

URPROG (length=132,title="Program Guide",xlate=x'0e00')

The command line could just as easily have been entered as:

URPROG (t="Program Guide",x=x'0e00',l=132)

Note that not only are abbreviations used, but the order of appearance in the command
line is irrelevant. Also note that parentheses enclose the command line parameters;
however, the closing parenthesis is not required. You can take some liberties with the
string and hexadecimal syntax. Hexadecimal entries can drop the closing single quote.
Strings are considered terminated by any value less than SPACE. Thus, a closing carriage
return validly terminates a string. This leeway permits entry of such command lines as:

URPROG (t="Program Guide
URPROG (x=x'0e00,t="Program Guide

You're saying there must be a catch. How can @PARAM do all that? Easy - you must follow
some rules and implement some coding in your program. Not very much coding is required,
though. When you execute a command line, the command interpreter is activated (@CMNDI).
If a LIBRARY name is specified, the system's library module is activated. If a program
name is entered (the system first tries a default extension of /CMD if the user does not
supply one) the program will be loaded and transfer will be performed to the program's
transfer address which is located at the end of the load module (following the X'0202').
When control is passed to the program, register pair HL contain the address of the first
non-blank character following the program name entered. If @PARAM is requested, it will
search the command line for a parameter string left parenthesis starting from the address
pointed to by HL. It will ignore blanks while it looks for the "("; however, if it finds
a non-blank character other than "(", it will immediately return. If there are going to
be additional entries, such as file specifications, on the command line preceding
possible parameters, these must be parsed first by your program before issuing the @PARAM
SVC.

The prologue of URPROG might go something like this:

 URPROG PUSH HL ;Hang on to INBUF$ pointer
 LD HL,HELLO$;Point to hello message
 LD A,@DSPLY ;Display message to screen
 RST 40
 POP HL ;Recover INBUF$ pointer
 LD DE,PRMTBL$;Point to parameter table
 LD A,@PARAM ;Go parse all of the parms
 RST 40
 JP NZ,PRMERR ;Go to error handler if bad entry
 .
 . ;The rest of URPROG
 .
 HELLO$ DB 10,'Some friendly message',CR
 ;*=*=*
 ; This is the parameter table. Note its entries are
 ; all 6-characters in width. The address specified by
 ; the parameter vector follows each parameter "word".
 ; In addition, the table is ended with a zero byte.
 ;*=*=*
 PRMTBL$ DB 'LENGTH' ;Length parameter
 DW LPARM+1
 DB 'L '

8-32

 DW LPARM+1
 DB 'FEED ' ;Line feed parameter
 DW FPARM+1
 DB 'F '
 DW FPARM+1
 DB 'TITLE ' ;Title parameter
 DW TPARM+1
 DB 'T '
 DW TPARM+1
 DB 'PROMPT' ;Prompt parameter
 DW PPARM+1
 DB 'P '
 DW PPARM+1
 DB 'XLATE ' ;Translate parameter
 DW XPARM+1
 DB 'X '
 DW XPARM+1
 NOP ;This is the ending zero byte

The PRMTBL$ is going to be structured similarly for all tables. The convention used of
specifying the address vector as "LABEL+1" will become immediately obvious once you
inspect the method of using the result in URPROG. As an aside, let's look at two
conventions of referencing the second byte of a three-byte instruction.

 METHOD1 LD (LABEL+1),HL ;Load HL into the "nn" field
 .
 .
 .
 LABEL LD BC,0 ;P/u the value loaded

 METHOD2 LD (LABEL),HL ;Load HL into the "nn" field
 .
 .
 .
 LD BC,0 ;P/u the value loaded
 LABEL EQU $-2 ;The "nn" field is 2-bytes back

The first method will be used to illustrate parameter table vector addresses in this
appendix section. Use the method you are most comfortable with. It is suggested that you
choose one technique and use it exclusively throughout a program. Otherwise you will find
yourself getting into trouble as you forget which method you were using.

Now that the @PARAM system function has parsed the entered command line, how do we
utilize the "values" it interpreted while still supporting our defaults and conditions?
Well, bear in mind that if the user has not entered a parameter word, nothing will be
entered by @PARAM into the address vector specified by the parameter table. Therefore, an
initial condition can be supplied in the coding. Also, the initial value coded will be
dependent on just what condition you want the default to be. Let's see how this would
work.

 .
 . ;Some front end code
 .
 ;*=*=*
 ; Here is where we pick up the length parameter. Note
 ; that it is initialized to 80 if there is no user entry
 ;*=*=*
 LPARM LD BC,80 ;Pick up the entry
 INC B ;Test hi-order for zero
 DEC B ;It must be zero for range check
 JP NZ,LBAD ;Bad length if range >255
 LD A,C ;P/u the lo-order length

8-33

 CP 32 ;Must be >= 32
 JP C,LBAD ;Bad length if range < 32
 ;*=*=*
 ; The length parameter has been tested for proper range.
 ; It can be used in URPROG where needed by either stuffing
 ; the accumulator where needed or by picking up the value
 ; later by a "LD A,(LPARM+1)" instruction.
 ;*=*=*
 .
 .
 .
 .
 ;*=*=*
 ; Here is where we pick up the line feed parameter. Based
 ; on the conditions specified, we need a three-way test.
 ; What has to be ascertained is whether the user specified
 ; FEED=ON, FEED=OFF, or didn't even enter FEED. The ON/OFF
 ; entries are the same as TRUE/FALSE specifications and
 ; result in a -1/0 value respectively (ON = -1, OFF = 0).
 ; We therefore must define a default value which is
 ; neither 0 nor -1.
 ;*=*=*
 FPARM LD BC,1 ;We will use a "default" of 1
 LD A,B ;Merge the hi and lo orders
 OR C
 JR Z,RMVFEED ;Remove line feed if FEED=OFF
 INC A ;If FEED=ON was specified, A=X'FF'
 JR Z,ADDFEED ; thus A would be zero after the INC
 ;*=*=*
 ; The line feed parameter has now been handled. It is left
 ; up to the reader to provide routines for RMV and ADD FEED.
 ;*=*=*
 .
 .
 .
 .
 ;*=*=*
 ; The title parameter needs to default to ON per our
 ; conditions. This would mean that if no TITLE was
 ; supplied in the command line, the user would be prompted
 ; to enter it (user friendly). On string parameters,
 ; @PARAM will load the address of the first character of
 ; "string" into the vector address specified in PRMTBL$.
 ; URPROG will then have to parse the string until it finds
 ; one of the string terminating characters.
 ;*=*=*
 TPARM LD BC,-1 ;Force the default to be TITLE=Y
 LD A,B ;Check on entry of T=N
 OR C ;Merge hi and lo orders
 JR Z,NOTITLE ;To user provided routine
 INC A ;Check if T=Y or no entry
 LD HL,PMTITL$;Init pointer just in case
 CALL Z,GETITLE ;Go prompt & get title if only T=Y
 ;*=*=*
 ; The GETITLE routine would have to display the prompt,
 ; provide an input means, then place the address of the
 ; first character of string into register pair BC.
 ; Otherwise, reg BC already has the address of that char.
 ;*=*=*
 .
 . ;Your routine for parsing the title
 . ;character string belongs here.
 .
 ;*=*=*
 ; The prompt parameter will be an easy one. Its default is
 ; PROMPT=OFF and no other special conditions need be met.

8-34

 ;*=*=*
 PPARM LD BC,0 ;Zero because the default is OFF
 LD HL,FLAG$;Let's set a flag for this one
 RES 0,(HL) ;Init flag to off
 LD A,C ;Only the lo-order is needed
 OR A ;Test the entry
 JR Z,$+4 ;Skip the next instruction if P=N
 SET 0,(HL) ;Set the flag if P=Y
 .
 .
 .
 ;*=*=*
 ; The translation parameter is the last one to retrieve.
 ; In order to provide a default of no translate character,
 ; the code will use a zero value for this test. It is
 ; important to note that since the entry is a 16-bit
 ; value, your documentation must clearly note which order
 ; is the character to test. If in X'xxyy', we denote "xx"
 ; for the test character and "yy" its translated value,
 ; then "yy" becomes the lo-order byte when loaded while
 ; "xx" becomes the hi-order byte.
 ;*=*=*
 XPARM LD BC,0 ;Note the zero default
 ;*=*=*
 ; That's all there is to it. We could, of course, test
 ; for an X'0000' value and set a flag to indicate no XLATE
 ; option entered. Then later test the flag first before
 ; checking on a XLATE match. However, it would probably take
 ; just as long to test for the option as it would to
 ; test for the character so we will not use a flag.
 ;*=*=*
 .
 .
 .
 ;*=*=*
 ; Here is some code that could use the translate feature
 ; The character is in the accumulator.
 ;*=*=*
 LD BC,(XPARM+1) ;P/u the test characters
 CP B ;Translate this character?
 JR Z,$+3 ;If match, use translate
 LD C,A ; else use this character
 LD DE,PRDCB$;Point to Device Control Block
 LD A,@PUT ; and put the character
 RST 40
 .

Sometimes, you may want to provide a parameter that can be entered either as a decimal
value, a hexadecimal value, or as a string value. For instance, if you want the user to
optionally assign a "separator" character which defaults to a semicolon, it would be very
friendly to accept any of the following: [sep=X'3A', or sep=58, or sep=":"]. The decoding
can get involved. When the program is expecting a 16-bit value, if we would closely
inspect the decoding of the parameter entry, we would find that there is difficulty in
differentiating a string parameter which returns a 16-bit address from a decimal or
hexadecimal value. Another observation is that while the inclusion of abbreviations for
the parameter words is both recommended and desirable, it requires duplicate entries in
the parameter table. These entries waste memory space. The second parameter table format
solves these problems. First, the system provides feedback as to the type of entry
contained in the parameter command string: switch (yes/no, true/false, on/off), value
(16-bit decoded decimal or hexadecimal entry), or string (start address and length). In
addition, each parameter word can be a different length while single character
abbreviations are specified within the one table entry. Let's take a look at our
parameter table if it were recoded into the second format.

8-35

 VAL EQU 80H ;Set value bit
 SW EQU 40H ;Set switch bit
 STR EQU 20H ;Set string bit
 ABR EQU 10H ;Set abbreviation bit
 ;
 PRMTBL$ DB 80H ;Indicate format 2
 ;
 DB VAL.OR.ABR.OR.6
 DB 'LENGTH' ;Length parameter
 LRESP DB 0
 DW LPARM+1
 ;
 DB SW.OR.ABR.OR.4
 DB 'FEED' ;Line feed parameter
 FRESP DB 0
 DW FPARM+1
 ;
 DB STR.OR.ABR.OR.5
 DB 'TITLE' ;Title parameter
 TRESP DB 0
 DW TPARM+1
 ;
 DB SW.OR.ABR.OR.6
 DB 'PROMPT' ;Prompt parameter
 PRESP DB 0
 DW PPARM+1
 ;
 DB VAL.OR.STR.OR.5
 DB 'XLATE' ;Translate parameter
 XRESP DB 0
 DW XPARM+1
 NOP ;This is the ending zero byte

When the @PARAM service function completes its parsing and interpreting of the parameter
command string, the response byte corresponding to parameter entries will be altered
according to any entry parsed. Thus, your program can incorporate code to test the
response byte to determine the exact type of entry made in the parameter line. By
comparing the response byte to the control byte, the program can ascertain the validity
of the entry. It is left for the reader to adjust the decoding routines according to
table format 2.

8-36

8.14 TRAP Filter Illustrated
;TRAP/ASM - Filter to trap a single character - 07/31/83
;
 COM '<Copyright 1983 by Roy Soltoff>'
;*=*=*
; This FILTER will trap a single character
; as specified by the command line entry.
;
; A single byte to trap can be passed in the
; command line as a parameter. If not entered,
; it will default to X'0E', the infamous cursor
; on character which if sent to a printer, will
; cause expanded character mode on a lot of dot
; matrix printers if CURSOR ON is sent to *PR.
;
; To filter the printer output, issue:
; SET *TP to TRAP (CHAR=dd)
; FILTER *PR using *TP
;
;*=*=*
LF EQU 10 ;Line feed
CR EQU 13 ;Carriage return
@CHNIO EQU 20
@HIGH$ EQU 100
@DSPLY EQU 10
@FLAGS$ EQU 101
@PARAM EQU 17
@LOGOT EQU 12
;
 ORG 3000H
BEGIN PUSH DE
 POP IX ;Get DCB pointer into IX
 LD (MODDCB),DE ;Stuff DCB pointer
 PUSH HL ;Save command line ptr
 LD HL,HELLO$
 LD A,@DSPLY ;Display hello
 RST 40
 POP HL ;Rcvr command line ptr
;*=*=*
; Check if entry from SET command
;*=*=*
 LD A,@FLAGS$;Get flag pointer
 RST 40
 BIT 3,(IY+'C'-'A') ;System request?
 JP Z,VIASET
 LD DE,PRMTBL$;Point to parameter table
 LD A,@PARAM ;Get parms if any
 RST 40
 JR NZ,PRMERR
CPARM LD BC,14 ;Init to X'0E'
 LD A,(CRESP) ;P/u the response
 OR A ; & see if any entry
 JR Z,CDEFLT ;Default if none
 BIT 7,A ;Value entry?
 JR NZ,CDEFLT ;Value is in reg C
 BIT 5,A ;String value?
 JP NZ,PRMERR ;Error if anything else
 LD A,(BC) ;BC contains a pointer
 LD C,A ;Shorter than a jump
CDEFLT LD A,C ;Xfer the value to reg A
 LD (TRAPBYT+1),A ; & stuff in filter
;*=*=*
; install new HIGH$ and move filter code
;*=*=*
 LD HL,0 ;Get current HIGH$
 LD B,L
 LD A,@HIGH$
 RST 40
 JR NZ,NOMEM
 LD (OLDHI),HL ;Put in filter header
;*=*=*
; Move module into memory
;*=*=*

8-37

 EX DE,HL ;Destination address to DE
 LD HL,MODDCB-MODEND
 ADD HL,DE ;Relocate one address
 LD (RX01),HL
 LD HL,MODEND ;Last byte of module
 LD BC,LENGTH ;Length of filter
 LDDR
 EX DE,HL ;Move new HIGH$ to HL
 LD A,@HIGH$;Set new HIGH$ into the system
 RST 40
 INC HL ;Bump to filter entry
 LD (IX+0),40H.OR.7 ;Stuff TYPE byte
 LD (IX+1),L
 LD (IX+2),H ;Install addr into DCB
 LD HL,0 ;Successful...
 RET
;
PRMERR LD HL,PRMERR$
 DB 0DDH
VIASET LD HL,VIASET$
 DB 0DDH
NOMEM LD HL,NOMEM$
 LD A,@LOGOT
 RST 40
 LD HL,-1 ;Indicate extended error
 RET
;
HELLO$ DB LF,'TRAP filter to trap a character code',CR
PRMERR$ DB 'Bad parameters!',CR
NOMEM$ DB 'High memory is not available!',CR
VIASET$ DB 'Must install via SET!',CR
;
PRMTBL$ DB 80H
 DB 80H.OR.20H.OR.10H.OR.4
 DB 'CHAR' ;Parameter word
CRESP DB 0 ;Response byte
 DW CPARM+1 ;Storage address
 NOP ;Table end indicator
;
;*****
; Actual FILTER routine to shift up to HIGH$
;*****
TRAP JR START
OLDHI DW $-$;HIGH$ before filtering
 DB MODDCB-TRAP-5
 DB 'TRAP'
MODDCB DW $-$;Loaded with DCB pointer
 DW 0
;
START JR NZ,OUTP1 ;Go if not PUT
 LD A,C
TRAPBYT SUB 0 ;Space for trap char
 RET Z ;Back with Z & A=0 if trapped
OUTP1 PUSH IX ;Save current pointer
 LD IX,(MODDCB) ;P/u this module's DCB
RX01 EQU $-2
 LD A,@CHNIO ;Chain to the next
 RST 40
 POP IX
MODEND RET
LENGTH EQU $-TRAP
 END BEGIN

8-38

8.15 SLASH0 Filter Illustrated
;SLASH0/FLT - Version 6.0 - 05/27/83
;
 COM '<Copyright 1983 by Roy Soltoff>'
;
;*=*=*
; This filter will provide slashed zeroes on
; printers capable of accepting a backspace
;*=*=*
;
LF EQU 10
CR EQU 13
@CHNIO EQU 20
@HIGH$ EQU 100
@DSPLY EQU 10
@FLAGS$ EQU 101
@LOGOT EQU 12
 ORG 3000H
BEGIN PUSH DE
 POP IX ;Get dcb
 LD (MODDCB),DE ;Stuff DCB pointer
 LD HL,HELLO$
 LD A,@DSPLY ;Display hello
 RST 40
;*=*=*
; Check if entry from SET command
;*=*=*
 LD A,@FLAGS$;Get flags pointer
 RST 40
 BIT 3,(IY+'C'-'A') ;System request?
 JP Z,VIASET
;*=*=*
; install new HIGH$ and move filter code
;*=*=*
 LD HL,0 ;Get current HIGH$
 LD B,L
 LD A,@HIGH$
 RST 40
 JR NZ,NOMEM
 LD (OLDHI),HL ;Put in filter header
;*=*=*
; Relocate internal references in driver
;*=*=*
 LD IY,RELTAB ;Point to relocation tbl
 LD DE,MODEND
 OR A ;Clear carry flag
 SBC HL,DE
 LD B,H ;Move to BC
 LD C,L
RLOOP LD L,(IY) ;Get address to change
 LD H,(IY+1)
 LD A,H
 OR L
 JR Z,RXEND
 LD E,(HL) ;P/U address
 INC HL
 LD D,(HL)
 EX DE,HL ;Offset it
 ADD HL,BC
 EX DE,HL
 LD (HL),D ;And put back
 DEC HL
 LD (HL),E
 INC IY
 INC IY
 JR RLOOP ;Loop till done
;*=*=*
; Move driver into high memory
;*=*=*
RXEND LD DE,(OLDHI) ;Destination address
 LD HL,MODEND ;Last byte of module
 LD BC,LENGTH ;Length of filter
 LDDR

8-39

 EX DE,HL ;Move new HIGH$ to HL
 LD A,@HIGH$;Set new HIGH$ into the system
 RST 40
 INC HL ;Bump to filter entry
 LD (IX+0),40H.OR.7 ;Stuff TYPE byte
 LD (IX+1),L
 LD (IX+2),H ;Install addr into dcb
 LD HL,0 ;Successful...
 RET
;
VIASET LD HL,VIASET$
 DB 0DDH
NOMEM LD HL,NOMEM$
 @@LOGOT
 LD HL,-1
 RET
;
HELLO$ DB LF,'SLASH0 Filter'
NOMEM$ DB 'High memory is not available!',CR
VIASET$ DB 'Must install via SET!',CR
;
;*=*=*
; The SLASH-0 filter
;*=*=*
SLASH JR START
OLDHI DW $-$;HIGH$ before filtering
 DB MODDCB-SLASH-5
 DB 'SLASH0'
MODDCB DW $-$;Loaded with DCB pointer
 DW 0
;
START JR NZ,OUTP1 ;Go if not PUT
 LD A,C
 CP '0' ;ASCII zero?
 JR Z,OUTCF ;Go if so
OUTP1 PUSH IX ;Save current pointer
 PUSH BC ;Save in case affected downstream
 LD IX,(MODDCB) ;P/u this module's DCB
RX01 EQU $-2
 LD A,@CHNIO ;Chain to the next
 RST 40
 POP BC
 POP IX
 RET
;*=*=*
; Do the slashing
;*=*=*
OUTCF CALL OUTP1 ;Put the zero
RX02 EQU $-2
 LD C,08H ;Backspace
 CALL Z,OUTP1
RX03 EQU $-2
 LD C,'/' ;Now put the slash
 JR Z,OUTP1 ; unless an error
MODEND RET
;
LENGTH EQU $-SLASH
RELTAB DW RX01,RX02,RX03,0
;
 END BEGIN

8-40

8.16 DMP-500 BOLDFACE Filter Illustrated
;BOLDFACE/ASM - FILTER to invoke boldfacing on DMP-500 - 03/20/83
 TITLE '<DMP-500 BOLDFACE Filter>'
;*****
; This filter uses two trigger toggle characters to turn
; on and off the boldface mode of the DMP-500 printer.
; One character called TOGGLE (defaults to tilde) will
; toggle on/off boldface and output a space in lieu of
; the toggle character. This is useful to maintain right
; justification. The other character called NULL (defaults
; to DELETE, X'7F') toggles the boldface mode but causes
; no character to be sent in lieu of the toggle character.
; The boldface mode is automatically turned off when a
; carriage return (X'0D') is sensed.
;*=*=*
 COM '<Copyright (C) 1983 by MISOSYS>'
;*=*=*
LF EQU 10
CR EQU 13
ESCAPE EQU 27
BOLDON EQU 31
BOLDOFF EQU 32
@CHNIO EQU 20
@HIGH$ EQU 100
@DSPLY EQU 10
@FLAGS$ EQU 101
@PARAM EQU 17
@LOGOT EQU 12
;
 ORG 3000H
BEGIN PUSH DE
 POP IX ;Get DCB into IX
 LD (MODDCB),DE ;Stuff DCB pointer
 PUSH HL ;Save INBUF$ pointer
 LD HL,HELLO$
 LD A,@DSPLY
 RST 40
 POP HL ;Rcvr INBUF$ pointer
;*=*=*
; Check if entry from SET command
;*=*=*
 LD A,@FLAGS$;Get flags pointer into IY
 RST 40
 BIT 3,(IY+'C'-'A') ;System request?
 JP Z,VIASET
;
 LD DE,PRMTBL$;Grab any user parms
 LD A,@PARAM
 RST 40
 JP NZ,PRMERR
;*=*=*
; Transfer requested TOGGLE e/w space to filter
;*=*=*
 LD A,(TRESP) ;Ck if any entry
 LD B,A
TOGGLE LD HL,7EH ;Set default to TILDE
 LD A,(HL) ;P/u assumed string
 BIT 5,B ;String entry?
 JR NZ,TSTUF
 LD A,L ;P/u hex or dec entry
 BIT 6,B ;Error if switch entry
 JP NZ,PRMERR
TSTUF LD (TILDE1+1),A ;Stuff it in there
 LD (TILDE2+1),A
;*=*=*
; Transfer requested toggle w/o space to filter
;*=*=*
 LD A,(NRESP) ;Ck if any entry
 LD B,A
NULL LD HL,7FH ;Set default to DELETE
 LD A,(HL) ;P/u assumed string
 BIT 5,B ;String entry?
 JR NZ,NSTUF

8-41

 LD A,L ;P/u hex or dec entry
 BIT 6,B ;Error if switch entry
 JP NZ,PRMERR
NSTUF LD (NULL1+1),A ;Stuff it in there
 LD (NULL2+1),A
;*=*=*
; install new HIGH$ and move filter code
;*=*=*
 LD HL,0 ;get current HIGH$
 LD B,L
 LD A,@HIGH$
 RST 40
 JR NZ,NOMEM
 LD (OLDHI),HL ;put in filter header
;*=*=*
; Relocate internal references in driver
;*=*=*
 LD IY,RELTAB ;Point to relocation tbl
 LD DE,MODEND
 XOR A ;Clear carry flag
 SBC HL,DE
 LD B,H ;Move to BC
 LD C,L
RLOOP LD L,(IY) ;Get address to change
 LD H,(IY+1)
 LD A,H
 OR L
 JR Z,RXEND
 LD E,(HL) ;P/U address
 INC HL
 LD D,(HL)
 EX DE,HL ;Offset it
 ADD HL,BC
 EX DE,HL
 LD (HL),D ;And put back
 DEC HL
 LD (HL),E
 INC IY
 INC IY
 JR RLOOP ;Loop till done
;*=*=*
; Move driver
;*=*=*
RXEND LD DE,(OLDHI) ;Destination address
 LD HL,MODEND ;Last byte of module
 LD BC,LENGTH ;length of filter
 LDDR
 EX DE,HL ;Move new HIGH$ to HL
 LD A,@HIGH$;Set new HIGH$ into the system
 RST 40
 INC HL ;Bump to filter entry
 LD (IX+0),40H.OR.6 ;Stuff TYPE byte
 LD (IX+1),L
 LD (IX+2),H ;install addr into dcb
 LD HL,0 ;Successful...
 RET
;*=*=*
; Error message handling
;*=*=*
VIASET LD HL,VIASET$;'Must install...
 DB 0DDH
NOMEM LD HL,NOMEM$;'No memory'
 DB 0DDH
PRMERR LD HL,PRMERR$;'Parameter error'
 LD A,@LOGOT
 RST 40
 LD HL,-1
 RET
;*=*=*
; Data area
;*=*=*
HELLO$ DB 'DMP-500 BOLDFACE Filter Version 6.0a - '
 DB 'Copyright 1983 by Roy Soltoff',LF,CR
PRMERR$ DB 'Parameter error!',CR

8-42

NOMEM$ DB 'High memory is not available!',CR
VIASET$ DB 'Must install via SET',CR
;*=*=*
; Parameter table
;*=*=*
PRMTBL$ DB 80H!'R'
;
 DB 0F6H,'TOGGLE' ;Toggle on/off char
TRESP DB 0
 DW TOGGLE+1
;
 DB 0F4H,'NULL' ;Toggle on/off w/o space
NRESP DB 0
 DW NULL+1
;
 NOP ;End of table
;*=*=*
; Entry point
;*=*=*
;
BOLD JR START ;Branch around linkage
OLDHI DW $-$;Last byte used
;
 DB 7,'DMPBOLD'
;
MODDCB DW $-$;Loaded with DCB pointer
 DW 0
;
START JR Z,FILTER ;Go if @PUT
PUTOUT PUSH IX ;Save current pointer
 PUSH BC ;Save in case affected downstream
 LD IX,(MODDCB) ;P/u this module's DCB
RX01 EQU $-2
 LD A,@CHNIO ;Chain to the next
 RST 40
 POP BC
 POP IX
 RET
FILTER EQU $
SWITCH LD A,0 ;P/u switch
 OR A ;Is flag on?
 JR NZ,SWISON ;Go if switch is on
 LD A,C ;Is char a tilde?
TILDE1 CP 7EH
 JR Z,TONSPA ;Go if got to turn on
NULL1 CP 7FH ;Turn on w/o space?
 JR Z,TURNON
 JR PUTOUT ;Send the char
;*=*=*
; Got a flag to turn switch on/off
;*=*=*
TURNON LD C,BOLDON
 JR TURNA
TURNOFF XOR A
 LD C,BOLDOFF
TURNA LD (SWITCH+1),A ;Turn off the switch
RX02 EQU $-2
;
 PUSH BC ;Save toggle control code
 LD C,ESCAPE
 CALL PUTOUT ;Put the ESCAPE
RX03 EQU $-2
 POP BC ;Restore and PUT
 JR PUTOUT ; the toggle code
TOFFSPA CALL TURNOFF
RX04 EQU $-2
 JR PUT_SPA
TONSPA CALL TURNON
RX05 EQU $-2
PUT_SPA LD C,' ' ;Put space for tilde
 JR PUTOUT ; and stuff a space
;*=*=*
; Flag is on - what should we do?
;*=*=*

8-43

SWISON LD A,C ;Do we close the switch?
TILDE2 CP 7EH
 JR Z,TOFFSPA
NULL2 CP 7FH ;Turn off w/o space?
 JR Z,TURNOFF
 CP CR ;Turn off on EOL
 JR NZ,PUTOUT
 CALL TURNOFF
RX06 EQU $-2
 LD C,CR
 JR PUTOUT
MODEND EQU $-1
LENGTH EQU $-BOLD
RELTAB DW RX01,RX02,RX03,RX04,RX05,RX06,0
;
 END BEGIN

i

@
@ABORT7-2, 7-4, 7-8, 7-10, 7-19, 8-28
@ADTSK7-2, 7-5, 7-9, 7-10, 8-15
@BANK 7-2, 7-6, 7-8, 7-10, 8-21
@BKSP 6-11, 7-2, 7-5, 7-8, 7-11
@BREAK 7-2, 7-6, 7-8, 7-11
@CHNIO3-4, 3-5, 3-7, 3-10, 3-12,

.................... 3-13, 7-2, 7-4, 7-7, 7-12
@CKBRKC7-2, 7-6, 7-9, 7-12, 7-21
@CKDRV 4-3, 4-5, 5-1, 5-4, 7-2,

......................... 7-5, 7-9, 7-13, 8-27
@CKEOF 7-2, 7-5, 7-8, 7-13
@CKTSK7-2, 7-5, 7-9, 7-10, 7-13, 8-15, 8-18
@CLOSE6-12, 7-2, 7-5, 7-8, 7-14, 7-36
@CLS........................ 7-2, 7-6, 7-9, 7-14
@CMNDI7-1, 7-2, 7-4, 7-8, 7-14,

...........7-20, 8-25, 8-27, 8-28, 8-29, 8-31
@CMNDR6-8, 7-1, 7-2, 7-5, 7-8, 7-12,

.....7-14, 7-20, 7-26, 8-25, 8-27, 8-28, 8-29
@CTL...............3-8, 3-10, 3-11, 3-13, 3-14,

..............3-15, 3-16, 7-2, 7-4, 7-7, 7-14
@DATE 7-2, 7-4, 7-9, 7-15
@DCINIT4-11, 7-2, 7-5, 7-7, 7-15
@DCRES4-11, 7-3, 7-5, 7-7, 7-15
@DCSTAT4-11, 7-3, 7-5, 7-7, 7-16
@DEBUG 7-3, 7-5, 7-8, 7-16
@DECHEX 7-3, 7-6, 7-7, 7-16
@DIRRD5-7, 5-10, 7-3, 7-6, 7-9, 7-16
@DIRWR5-7, 5-10, 7-3, 7-6, 7-9, 7-17
@DIV16 7-3, 7-6, 7-7, 7-17
@DIV8 7-3, 7-6, 7-7, 7-17
@DODIR5-5, 5-10, 7-3, 7-5, 7-9,

............................ 7-17, 7-24, 8-28
@DSP............3-10, 7-3, 7-4, 7-7, 7-14, 7-18
@DSPLY7-3, 7-4, 7-7, 7-19, 7-29, 7-32
@ERROR7-3, 7-5, 7-8, 7-19, 8-9, 8-13, 8-27
@EXIT7-3, 7-4, 7-8, 7-10, 7-12, 7-19,

............................. 7-20, 8-27, 8-28
@FEXT 7-3, 7-5, 7-8, 7-19, 8-27
@FLAGS$7-3, 7-6, 7-8, 7-9, 7-20, 8-1
@FNAME7-3, 7-6, 7-8, 7-24, 8-27
@FSPEC6-4, 7-3, 7-5, 7-8, 7-24, 8-27
@GET..........2-6, 3-8, 3-10, 3-11, 3-13, 3-14,

............3-16, 3-17, 6-11, 6-12, 7-3, 7-4,

.......................... 7-7,7-8, 7-24, 7-37
@GTDCB3-3, 3-14, 7-3, 7-6, 7-9, 7-24, 8-27
@GTDCT7-3, 7-6, 7-9, 7-25, 7-35
@GTMOD3-6, 3-13, 7-3, 7-6, 7-9, 7-25,

............................. 8-14, 8-15, 8-28
@HDFMT4-11, 7-3, 7-5, 7-7, 7-25
@HEX16 7-3, 7-6, 7-7, 7-25
@HEX8 7-3, 7-6, 7-7, 7-26
@HEXDEC 7-3, 7-6, 7-7, 7-26
@HIGH$4-17, 7-3, 7-6, 7-8, 7-9,

............................. 7-26, 8-14, 8-16
@INIT5-1, 5-6, 5-12, 6-5, 6-6, 6-7,

...............6-8, 7-3, 7-5, 7-8, 7-26, 7-36
@IPL........................ 7-3, 7-4, 7-8, 7-27
@KBD...........3-10, 3-14, 7-3, 7-4, 7-7, 7-27,

............................. 8-2, 8-24, 8-25
@KEY........................ 7-3, 7-4, 7-7, 7-27
@KEYIN7-3, 7-4, 7-7, 7-27, 8-25
@KLTSK7-3, 7-5, 7-9, 7-28, 8-15, 8-17
@LOAD6-9, 7-3, 7-5, 7-8, 7-22, 7-28, 8-7
@LOC........................ 7-3, 7-5, 7-8, 7-28
@LOF........................ 7-3, 7-5, 7-8, 7-28
@LOGER7-3, 7-4, 7-7, 7-28, 7-29
@LOGOT 7-3, 7-4, 7-7, 7-29
@MSG........................ 7-3, 7-4, 7-7, 7-29
@MUL16 7-3, 7-6, 7-7, 7-29

@MUL8 7-3, 7-6, 7-7, 7-29
@OPEN4-5, 5-1, 5-6, 6-6, 6-7, 6-8,

....... 6-12, 7-3, 7-5, 7-8, 7-22, 7-30, 7-36
@PARAM 3-9, 7-3, 7-4, 7-7, 7-9,

............................ 7-30, 8-27, 8-30
@PAUSE 4-5, 7-3, 7-4, 7-8, 7-31
@PEOF 6-12, 7-3, 7-5, 7-8, 7-32
@POSN6-10, 6-14, 7-3, 7-5, 7-8, 7-32
@PRINT 7-3, 7-4, 7-7, 7-32
@PRT.................. 3-10, 7-3, 7-4, 7-7, 7-32
@PUT................. 2-6, 3-7, 3-8, 3-10, 3-11,

......... 3-13, 3-14, 3-15, 3-16, 6-11, 6-12,

.............. 7-3, 7-4, 7-7, 7-8, 7-33, 7-37
@RAMDIR ...5-10, 7-3, 7-5, 7-9, 7-24, 7-33, 8-28
@RDHDR4-11, 7-3, 7-5, 7-7, 7-34
@RDSEC4-8, 4-11, 5-1, 7-3, 7-5,

............................. 7-7, 7-34, 7-44
@RDSSC5-1, 5-10, 7-3, 7-6, 7-9, 7-35
@RDTRK4-11, 7-3, 7-5, 7-7, 7-35
@READ2-6, 6-10, 6-12, 7-3, 7-5,

............................. 7-8, 7-35, 7-36
@REMOV 7-3, 7-5, 7-8, 7-36
@RENAM6-7, 7-4, 7-5, 7-8, 7-36, 8-27
@REW........................ 7-4, 7-5, 7-8, 7-36
@RMTSK7-4, 7-5, 7-9, 7-36, 8-15
@RPTSK7-4, 7-5, 7-9, 7-37, 8-15, 8-17
@RREAD6-12, 7-4, 7-5, 7-8, 7-37
@RSLCT4-11, 7-4, 7-5, 7-7, 7-37
@RSTOR4-11, 7-4, 7-5, 7-7, 7-37
@RUN..............6-9, 7-1, 7-4, 7-5, 7-8, 7-37
@RWRIT 7-4, 7-5, 7-8, 7-38
@SEEK 4-11, 7-4, 7-5, 7-7, 7-38
@SEEKSC 7-4, 7-5, 7-8, 7-38
@SKIP 7-4, 7-5, 7-8, 7-38
@SLCT4-11, 7-4, 7-5, 7-7, 7-39, 7-44
@SOUND 7-4, 7-6, 7-39
@STEPI4-11, 7-4, 7-5, 7-7, 7-39
@TIME 7-4, 7-9, 7-40
@VDCTL 3-15, 7-4, 7-7, 7-8, 7-9
@VER........................ 7-4, 7-5, 7-8, 7-42
@VRSEC 4-8, 4-11, 5-2, 5-10, 7-4, 7-5, 7-7, 7-42
@WEOF 6-12, 7-4, 7-5, 7-8, 7-43
@WHERE 7-4, 7-9, 7-43
@WRITE2-6, 7-4, 7-5, 7-8, 7-36,

............................ 7-38, 7-42, 7-43
@WRSEC4-11, 7-4, 7-5, 7-8, 7-43, 7-44
@WRSSC4-11, 5-1, 5-10, 7-4, 7-5, 7-8, 7-44
@WRTRK4-11, 7-4, 7-5, 7-8, 7-44

C
CP/M.............................. 2-1, 3-7, 4-3

D
data address mark 4-8, 5-1, 8-9
DCB...............2-2, 2-4, 3-1, 3-4, 3-7, 3-8,

.......... 3-9, 3-10, 3-11, 3-12, 3-14, 6-13,

....... 7-3, 7-6, 7-9, 7-15, 7-24, 8-15, 8-27
DCT..............2-2, 3-1, 4-1, 4-3, 4-14, 5-3,

............. 5-5, 6-10, 7-3, 7-6, 7-9, 7-21,

............................ 7-25, 7-35, 8-26
directory2-3, 4-7, 5-1, 5-2, 5-4, 5-6,

.............5-7, 5-8, 5-9, 5-10, 5-11, 5-13,

.............. 6-2, 6-3, 6-14, 7-3, 7-4, 7-5,

............ 7-6, 7-8, 7-9, 7-13, 7-14, 7-16,

............... 7-17, 7-22, 7-24, 7-30, 7-33,

..... 7-35, 7-36, 7-43, 7-44, 8-9, 8-11, 8-26
DIRECTORY ENTRY 5-1
Disk Operating System 4-1, 6-1

ii

F
FCB.........2-2, 2-3, 2-4, 3-2, 3-6, 3-8, 3-14,

......... 5-11, 6-2, 6-3, 6-4, 6-6, 6-7, 6-8,

.......... 6-9, 6-11, 6-12, 6-13, 7-11, 7-13,

......... 7-15, 7-19, 7-24, 7-28, 7-32, 7-35,

..... 7-36, 7-37, 7-38, 7-39, 7-42, 7-43, 8-8
FILTER3-9
floppy disk2-1, 2-3, 4-1, 4-3, 4-5,

.............. 4-7, 4-9, 4-16, 5-1, 5-2, 6-1,

........... 6-10, 7-34, 7-35, 7-44, 8-9, 8-26
FPDE........................ 5-6, 5-7, 5-10, 6-2
FXDE.....5-7, 5-10, 5-11, 5-12, 5-13, 6-2, 8-12

G
GAT...............2-4, 4-3, 4-6, 4-8, 5-2, 5-3,

.................. 5-7, 5-9, 5-10, 7-36, 8-11

H
hard disk4-1, 4-3, 4-4, 4-7, 4-8,

... 4-9, 4-13, 4-16, 5-3, 5-8, 6-1, 7-25, 8-1
HIGH$ 7-11, 7-20, 8-14
HIMEM2-4
HIT........2-5, 4-8, 5-6, 5-9, 5-10, 7-36, 8-11

I
IOR...2-4

L
LDOS.............1-1, 2-1, 2-7, 3-14, 5-5, 8-27
Logical Systems, Inc 1-1, 4-12
LOR...2-4

LOWCORE2-4

M
machine specific1-1, 7-21, 7-22
MISOSYS1-1, 5-10, 6-12, 7-2, 8-7
MODDCB3-7, 3-11, 3-12, 3-13, 7-12, 8-14

O
OWNER password5-12, 6-4, 6-5, 6-6

P
PDS...2-2, 2-5, 5-10, 6-14, 6-15, 8-6, 8-7, 8-8
PRO-CREATE 1-1, 2-2, 6-12, 8-6
PRO-PaDS4-14, 5-10, 6-3, 7-2, 8-5, 8-7

S
SOR....................................2-4, 7-7
ST-506 4-6, 4-14, 5-9
SuperVisor Call1-1, 2-1, 7-1, 8-13
SYSRES 2-4, 8-27, 8-29

T
TRSDOS 2-1, 7-33

U
UPR...2-4
USER password5-12, 6-4, 6-5, 6-6

Z
Z-80................... 2-1, 2-3, 3-10, 4-4, 7-1

	Top of document
	Copyrights
	1. Introduction
	2. LDOS VERSION 6 - AN OPERATING SYSTEM OVERVIEW
	3. Device Input/Output Interfacing
	3.1 Device I/O In General
	3.2 The Device Control Block
	3.2.1 TYPE Field - Byte 0
	3.2.2 VECTOR Field - <Bytes 1 - 2>
	3.2.3 SYSDATA Field - <Bytes 3-5>
	3.2.4 NAME Field - <Bytes 6 - 7>

	3.3 ACCESSING DEVICE CONTROL BLOCKS
	3.4 DEVICE CHAIN ILLUSTRATIONS
	3.4.1 Header Protocol
	3.4.2 Sample DCB Structure
	3.4.3 Filtering
	3.4.4 Routing
	3.4.5 Filtering a Routed Device
	3.4.6 Linking
	3.4.7 Device Chain Hierarchy
	3.4.8 Device Chain Summary

	3.5 DEVICE DRIVER/FILTER TEMPLATE
	3.5.1 I/O Primitives
	3.5.2 I/O Separation
	3.5.3 Device Driver/Filter Return Codes
	3.5.4 Filter Interfacing
	3.5.5 Filter Initialization
	3.5.6 A Partial Filter
	3.5.7 External Access of Module Data

	3.6 @CTL INTERFACING TO DEVICE DRIVERS
	3.6.1 Keyboard driver [system driver assigned to *KI]
	3.6.2 Video driver [system driver assigned to *DO]
	3.6.3 Printer driver [system driver assigned to *PR]
	3.6.4 Forms Filter [non-resident system filter for forms control]
	3.6.5 COM driver [non-resident system driver for the RS-232C]

	4. DISK DRIVE INPUT/OUTPUT INTERFACING
	4.1 GENERAL DISK DRIVE CONFIGURATION
	4.2 DRIVE CONTROL TABLE (DCT)
	4.2.1 DCT VECTOR - <Bytes 0-2>
	4.2.2 DCT FLAG-1 - <Byte 3>
	4.2.3 DCT FLAG-2 <Byte 4>
	4.2.4 CURCYL - <Byte 5>
	4.2.5 MAXCYL - <Byte 6>
	4.2.6 CONFIGURATION FIELD - <Bytes 7-8>
	4.2.6.1 Byte 7
	4.2.6.2 Byte 8

	4.2.7 DIRCYL - <Byte 9>

	4.3 DISK CONTROLLER COMMUNICATIONS
	4.4 Skeletal Disk Driver
	4.5 HARD DISK ALLOCATION SCHEMES
	4.6 Placement of Disk Drivers

	5. The DOS Directory Structure
	5.1 GENERAL DIRECTORY CONVENTIONS
	5.2 THE GRANULE ALLOCATION TABLE (GAT)
	5.2.1 ALLOCATION TABLE - <Bytes X'00' - X'5F'>
	5.2.2 LOCKOUT TABLE - <Bytes X'60' - X'BF'>
	5.2.3 EXTENDED ALLOCATION TABLE - <Bytes X'C0' - X'CA'>
	5.2.4 DOS VERSION - <Byte X'CB'>
	5.2.5 CYLINDER EXCESS - <Byte X'CC'>
	5.2.6 DISK CONFIGURATION - <Byte X'CD'>
	5.2.7 DISK PACK PASSWORD - <Bytes X'CE' - X'CF'>
	5.2.8 PACK NAME - <Bytes X'D0' - X'D7'>
	5.2.9 PACK DATE - <Bytes X'D8' - X'DF'>
	5.2.10 RESERVED FIELD - <Bytes X'E0' - X'F4'>
	5.2.11 MEDIA DATA BLOCK - <Bytes X'F4' - X'FF'>

	5.3 THE HASH INDEX TABLE (HIT)
	5.4 THE DIRECTORY RECORD STRUCTURE
	5.4.1 ATTRIBUTES - <Byte 0>
	5.4.2 FLAG FIELD - <Byte 1>
	5.4.3 MODIFICATION DATE - <Bytes 1 - 2>
	5.4.4 EOF OFFSET - <Byte 3>
	5.4.5 LOGICAL RECORD LENGTH - <Byte 4>
	5.4.6 FILE NAME - <Bytes 5 - 12>
	5.4.7 FILE EXTENSION - <Bytes 13 - 15>
	5.4.8 OWNER PASSWORD - <Bytes 16 - 17>
	5.4.9 USER PASSWORD - <Bytes 18 - 19>
	5.4.10 ENDING RECORD NUMBER - <Bytes 20 - 21>
	5.4.11 EXTENT DATA FIELDS - <Bytes 22 - 29>
	5.4.11.1 Extent Field 1 - <Bytes 22-23>
	5.4.11.2 Extent Field 2 - <Bytes 24-25>
	5.4.11.3 Extent Field 3 - <Bytes 26-27>
	5.4.11.4 Extent Field 4 - <Bytes 28-29>

	5.4.12 FXDE LINK FLAG - <Byte 30>
	5.4.13 FXDE LINK POINTER - <Byte 31>

	6. Disk File Access and Control
	6.1 GENERAL FILE STRUCTURES
	6.2 CONTROLLING DISK FILES
	6.2.1 Getting Filespecs
	6.2.2 Password Protection of Files
	6.2.3 Opening Files
	6.2.4 Closing Files
	6.2.5 Miscellaneous File Control

	6.3 ACCESSING DISK FILES
	6.3.1 Specific Access Requests

	6.4 The FILE CONTROL BLOCK (FCB)
	6.4.1 TYPE code of the control block - <Byte 0>
	6.4.2 Input/Output Status - <Byte 1>
	6.4.3 PDS Member Origin Offset - <Byte 2>
	6.4.4 Disk File Buffer Pointer - <Bytes 3-4>
	6.4.5 Next Record Number Byte Offset - <Byte 5>
	6.4.6 Logical Drive Number - <Byte 6>
	6.4.7 Directory Entry Code - <Byte 7>
	6.4.8 Ending Record Number Byte Offset - <Byte 8>
	6.4.9 Logical Record Length - <Byte 9>
	6.4.10 Next Record Number <Bytes 10-11>
	6.4.11 Ending Record Number <Bytes 12-13>
	6.4.12 Starting Extent - <Bytes 14-15>
	6.4.13 Extent Quad 1 - <Bytes 16-19>
	6.4.14 Extent Quad 2 - <Bytes 20-23>
	6.4.15 Extent Quad 3 - <Bytes 24-27>
	6.4.16 Extent Quad 4 - <Bytes 28-31>

	7. Interfacing via SuperVisor Calls
	7.1 SUPERVISOR CALL LINKAGE
	7.1.1 Adding or Changing SVC Entries
	7.2 PROGRAM ENTRY AND EXIT CONDITIONS
	7.3 SUPERVISOR CALLS LISTED ALPHABETICALLY
	7.4 SUPERVISOR CALLS LISTED NUMERICALLY
	7.5 SUPERVISOR CALLS LISTED BY FUNCTION GROUP
	7.5.1 Character I/O
	7.5.2 Line I/O
	7.5.3 Data Conversion
	7.5.4 Disk Controller Communications
	7.5.5 File Access
	7.5.6 File Control
	7.5.7 System Control
	7.5.8 System Data
	7.5.9 Task Process Control
	7.5.10 Miscellaneous

	7.6 SUPERVISOR CALL DETAILS
	7.6.1 @ABORT SVC-21
	7.6.2 @ADTSK SVC-29
	7.6.3 @BANK SVC-102
	7.6.4 @BKSP SVC-61
	7.6.5 @BREAK SVC-103
	7.6.6 @CHNIO SVC-20
	7.6.7 @CKBRKC SVC-106
	7.6.8 @CKDRV SVC-33
	7.6.9 @CKTSK SVC-28
	7.6.10 @CLOSE SVC-60
	7.6.11 @CLS SVC-105
	7.6.12 @CMNDI SVC-24
	7.6.13 @CMNDR SVC-25
	7.6.14 @CTL SVC-05
	7.6.15 @DATE SVC-18
	7.6.16 @DCINIT SVC-42
	7.6.17 @DCRES SVC-43
	7.6.18 @DCSTAT SVC-40
	7.6.19 @DEBUG SVC-27
	7.6.20 @DECHEX SVC-96
	7.6.21 @DIRRD SVC-87
	7.6.22 @DIRWR SVC-88
	7.6.23 @DIV16 SVC-94
	7.6.24 @DIV8 SVC-93
	7.6.25 @DODIR SVC-34
	7.6.26 @DSP SVC-02
	7.6.27 @DSPLY SVC-10
	7.6.28 @ERROR SVC-26
	7.6.29 @EXIT SVC-22
	7.6.30 @FEXT SVC-79
	7.6.31 @FLAGS$ SVC-101
	7.6.32 @FNAME SVC-80
	7.6.33 @FSPEC SVC-78
	7.6.34 @GET SVC-03
	7.6.35 @GTDCB SVC-82
	7.6.36 @GTDCT SVC-81
	7.6.37 @GTMOD SVC-83
	7.6.38 @HDFMT SVC-52
	7.6.39 @HEX16 SVC-99
	7.6.40 @HEX8 SVC-98
	7.6.41 @HEXDEC SVC-97
	7.6.42 @HIGH$ SVC-100
	7.6.43 @INIT SVC-58
	7.6.44 @IPL SVC-00
	7.6.45 @KBD SVC-08
	7.6.46 @KEY SVC-01
	7.6.47 @KEYIN SVC-09
	7.6.48 @KLTSK SVC-32
	7.6.49 @LOAD SVC-76
	7.6.50 @LOC SVC-63
	7.6.51 @LOF SVC-64
	7.6.52 @LOGER SVC-11
	7.6.53 @LOGOT SVC-12
	7.6.54 @MSG SVC-13
	7.6.55 @MUL16 SVC-91
	7.6.56 @MUL8 SVC-90
	7.6.57 @OPEN SVC-59
	7.6.58 @PARAM SVC-17
	7.6.59 @PAUSE SVC-16
	7.6.60 @PEOF SVC-65
	7.6.61 @POSN SVC-66
	7.6.62 @PRINT SVC-14
	7.6.63 @PRT SVC-06
	7.6.64 @PUT SVC-04
	7.6.65 @RAMDIR SVC-35
	7.6.66 @RDHDR SVC-48
	7.6.67 @RDSEC SVC-49
	7.6.68 @RDSSC SVC-85
	7.6.69 @RDTRK SVC-51
	7.6.70 @READ SVC-67
	7.6.71 @REMOV SVC-57
	7.6.72 @RENAM SVC-56
	7.6.73 @REW SVC-68
	7.6.74 @RMTSK SVC-30
	7.6.75 @RPTSK SVC-31
	7.6.76 @RREADSVC-69
	7.6.77 @RSLCT SVC-47
	7.6.78 @RSTOR SVC-44
	7.6.79 @RUN SVC-77
	7.6.80 @RWRIT SVC-70
	7.6.81 @SEEK SVC-46
	7.6.82 @SEEKSC SVC-71
	7.6.83 @SKIP SVC-72
	7.6.84 @SLCT SVC-41
	7.6.85 @SOUND SVC-104
	7.6.86 @STEPI SVC-45
	7.6.87 @TIME SVC-19
	7.6.88 @VDCTL SVC-15
	7.6.89 @VER SVC-73
	7.6.90 @VRSEC SVC-50
	7.6.91 @WEOF SVC-74
	7.6.92 @WHERE SVC-07
	7.6.93 @WRITE SVC-75
	7.6.94 @WRSEC SVC-53
	7.6.95 @WRSSC SVC-54
	7.6.96 @WRTRK SVC-55

	8. APPENDIX
	8.1 BOOT INITIALIZATION ICNFG INTERFACING
	8.2 THE KFLAG$ SCANNER
	8.3 DISK LOAD MODULE FORMATS
	8.4 ERROR MESSAGE DICTIONARY
	8.5 HEADER PROTOCOL OF MEMORY MODULES
	8.6 INTERRUPT TASK PROCESSOR INTERFACING
	8.7 LOW MEMORY DETAILS
	8.7.1 Details of Low Memory Page 0
	8.7.2 Details of Low Memory Page 1
	8.7.3 Details of Low Memory Page 2
	8.7.4 Details of Low Memory Page 4

	8.8 MEMORY BANK SWITCHING
	8.9 INTERFACING TO @KITSK
	8.10 SYSTEM DISK BOOT TRACK
	8.11 SYSTEM OVERLAY CONTENTS
	8.11.1 SYS0/SYS
	8.11.2 SYS1/SYS
	8.11.3 SYS2/SYS
	8.11.4 SYS3/SYS
	8.11.5 SYS4/SYS
	8.11.6 SYS5/SYS
	8.11.7 SYS6/SYS
	8.11.8 SYS7/SYS
	8.11.9 SYS8/SYS
	8.11.10 SYS9/SYS
	8.11.11 SYS10/SYS
	8.11.12 SYS11/SYS
	8.11.13 SYS12/SYS
	8.11.14 SYS13/SYS

	8.12 SYSTEM OVERLAY ACCESS
	8.13 USING @PARAM
	8.14 TRAP Filter Illustrated
	8.15 SLASH0 Filter Illustrated
	8.16 DMP-500 BOLDFACE Filter Illustrated

	Index

